10 research outputs found

    Psychological features and social adaptation of internet-addicted adolescents and adolescents with cannabinoid addiction

    Get PDF
    The Objective of the research is to study the characteristics of character properties, emotional intelligence, social psychological adaptation of Internet addicted adolescents and adolescents addicted with drugs. Design. A comparative study of the psychological properties of cannabinoid addicted adolescents (n = 20) and Internet addicted adolescents (n = 20), and also healthy adolescents without symptoms of addiction (n = 20) is conducted. The following methods are used in the study: Barratt’s impulsiveness scale (BIS-11), 1987, adapted by T.I. Medvedeva and S.N. Enikolopov, 2015, Cloninger temperament and character questionnaire (TCI-125), 1991, adapted by N.A. Almaev and L.D. Ostrovskaya, 2005, the methodology for diagnosing emotional intelligence MSCEITV 2.0 2002, adapted by E.A. Sergienko, N.I. Vetrova, 2009, the methodology for diagnosing the social psychological adapted by K. Rogers and R. Diamond, 1954, adapted by A.K. Osnitsky, 2002, Chen Internet Addiction Scale (CIAS), 2003 adapted by V.L. Malygin and K.A. Feklisov, 2010 Results. Adolescents with Internet addiction and adolescents with cannabinoid addiction have a certain similarity in a number of characteristic features. They are characterized by a more pronounced motor impulsiveness, low self-control, low self-esteem, dependence on other individulas and circumstances, lack of clear life goals. In general, if compared to healthy adolescents they appear to be infantile individuals, socially maladjusted, more often experiencing emotional discomfort, which can result in pathologies, i.e. particularly various types of addictive behaviour. Simultaneously, Internet-dependent adolescents are significantly different from those with cannabinoid addiction. They are characterized by a lower level of transcendence and a lesser inclination to spiritual practices and transpersonal experience accordingly. They have a low level of search for novelty, which characterizes them as conservative, rigid and passive individuals. Conclusion. The data obtained reveal certain differences in the psychological mechanisms of Internet addiction and dependence on drugs. Psychological mechanisms of adolescent Internet addiction and dependence on cannabinoids have significant differences

    Small telescopes being effective: MAGIC or not?

    Full text link
    The paper describes the MAGIC multi-mode focal reducer (Monitoring of Active Galaxies by Investigation of their Cores), commissioned on the 1-m Zeiss-1000 telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences in September 2020. Three observational modes are currently realised: photometry, polarimetry, and long-slit spectroscopy. Reducing the focal length makes it possible to obtain a sufficiently large field of view for photometry and a large slit height for spectroscopy of \sim12', as well as a large field of view for polarimetry with a quadrupole Wollaston prism of \sim6'.4. This feature makes the complex study of extended nebulae and galaxies efficient. The MAGIC capabilities are presented in examples of observations of various astronomical objects. The spectral mode in the range of 4000-7200 AA provides the spectral resolution RR \sim 1000; for a starlike target up to 14 mag in medium-band filters with a seeing of 1'' for 20 minutes of total exposure, the photometry accuracy is better than 0.01 mag and the polarization accuracy is better than 0.6%. Especially for the new focal reducer, an offset guide and a position angle rotation system were implemented. The results of the modernization of the baffle system in the optical scheme of the telescope for the suppression of scattered light are also described

    Diethyl [2,2,2-trifluoro-1-phenyl­sulfonyl­amino-1-(trifluoro­meth­yl)eth­yl]phospho­nate

    Get PDF
    The title compound, C13H16F6NO5PS, is of inter­est with respect to inhibition of serine hydro­lases. Its structure contains a 1.8797 (13) Å P—C bond and two inter­molecular N—H⋯O=P hydrogen bonds, resulting in centrosymmetric dimers. An intra­molecular N—H⋯O=P hydrogen bond is also present

    A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet

    Get PDF
    A gyrotron with an axis-encircling electron beam is capable of high-frequency operation, because the high-beam efficiency is kept even at high harmonics of the electron cyclotron frequency. We have designed and constructed such a gyrotron with a permanent magnet. The gyrotron has already operated successfully at the third, fourth, and fifth harmonics. The frequencies are 89.3, 112.7, and 138 GHz, respectively, and the corresponding cavity modes are TE/sub 311/, TE/sub 411/, and TE/sub 511/. The permanent magnet system is quite novel and consists of many magnet elements made of NbFeB and additional coils for controlling the field intensities in the cavity and electron gun regions. The magnetic field in the cavity region can be varied from 0.97 to 1.18 T. At the magnetic field intensities, the output powers at the third and the fourth harmonics are 1.7 and 0.5 kW, respectively. The gyrotron is pulsed, the pulse length is 1 ms and the repetition frequency is 1 Hz. The beam energy is 40 kV and the beam current is 1.2-1.3 A. Beam efficiencies and emission patterns have also been measured. In this paper, the experimental results of the gyrotron are described and compared with computer simulations

    Completion of the 8 MW Multi-Frequency ECRH System at ASDEX Upgrade

    Get PDF
    Over the last 15 years, the Electron Cyclotron Resonance Heating (ECRH) system at the ASDEX Upgrade tokamak has been upgraded from a 2 MW, 2 s, 140 GHz system to an 8 MW, 10 s, dual frequency system (105/140 GHz). Eight gyrotrons were in routine operation during the current experimental campaign. All gyrotrons are step-tunable operating at 105 and 140 GHz with a maximum output power of about 1 MW and 10 s pulse length. The system includes 8 transmission lines, mainly consisting of oversized corrugated waveguides (I.D. = 87 mm) with overall lengths between 50 and 70 meters including quasi-optical sections at both ends. Further improvements of the transmission lines with respect to power handling and reliability are underway

    Low-Frequency Magnetic Scanning Device and Algorithm for Determining the Magnetic and Non-Magnetic Fractions of Moving Metallurgical Raw Materials

    No full text
    The development of an algorithm to automate the process of measuring the magnetic properties of macroscopic objects in motion is an important problem in various industries, especially in ferrous metallurgy and at factories where ferrous scrap is a strategic raw material. The parameter that requires work control is the hidden mass fraction of a non-magnetic substance that is present in the ferromagnetic raw material. The solution to this problem has no prototypes. In our work, a simple measuring device and a mathematical algorithm for calculating the mass fraction of the non-magnetic fraction in a strongly magnetic matrix were developed. The device is an inductance coil, in which the angle of the electromagnet losses is related to the mass of the magnetic material moving the coil. The magnitude of the instantaneous values of the lost angle integral was compared with the result of weighing the object on scales. This allowed us to calculate the proportion of the magnetic and non-magnetic fractions. The use of this prototype is herein illustrated. The experimental results of the determination of the magnetic-fractional composition depending on the mass of scrap metal and its bulk and the magnetic characteristics are presented

    Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    No full text
    \u3cp\u3eIntegrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.\u3c/p\u3
    corecore