29 research outputs found

    Probabilistic Modelling in Solving Analytical Problems of System Engineering

    Get PDF
    This chapter provides some aspects to probabilistic modelling in solving analytical problems of system engineering. The historically developed system of the formation of scientific bases of engineering calculations of characteristics of strength, stability, durability, reliability, survivability and safety is considered. The features of deterministic and probabilistic problems of evaluation of the characteristics of strength, stiffness, steadiness, durability and survivability are considered. Probabilistic problems of reliability, security, safety and risk assessment of engineering systems are formulated. Theoretical bases and methods of probabilistic modelling of engineering systems are stated. The main directions of solving the problems of ensuring security and safety according to the accident risk criteria are determined. The possibilities of probabilistic modelling methods in solving the problems of strength, reliability and safety of engineering systems are shown in practical examples

    Numerical simulation of deformation behavior of aluminum alloy sheets under processing by groove pressing method

    Get PDF
    The results of theoretical estimation of capabilities of the material structure modification of 1560 aluminum alloy sheets under processing by severe plastic deformation are presented in this paper. Severe plastic deformation of flat specimens is effected by the constrained groove pressing method in original dies with trapezoidal teeth. The numerical simulation results of the sheet specimen treatment process by severe plastic deformation were used for dies designing. The stress-strain state of flat aluminum alloy specimens and the steel dies at high processing temperature, support reaction force during pressing and the degrees of plastic strain accumulation at the optimum mode of pressing were estimated. The main numerical result is the value of accumulated plastic strain in the specimen per one pressing cycle which is about 1.14. Large degrees of strain are the reasons of grain structure and material texture changes, which leads to inevitable change of its physical-mechanical properties. Increasing the number of pressing cycles leads to proportional increase of the degree of accumulated plastic strain

    Laboratory, Bench, and Full-Scale Researches of Strength, Reliability, and Safety of High-Power Hydro Turbines

    Get PDF
    Large hydropower plants (HPPs) are categorized as critically and strategically important infrastructure facilities in industrialized countries. Therefore, the issues of ensuring HPPs safety are of paramount importance. In this chapter, the basic aspects of the safety analysis of HPPs, calculation and experimental substantiation of the strength, and resource and reliability of the main equipment are discussed. The scientific and technical measures to ensure safety of HPPs are presented. As a defining measure of safety, it is proposed to ensure the protection of HPPs from severe accidents and disasters according to risk criteria. The main provisions of the risk assessment are presented on the basis of a sequential analysis of loads, features of stress-strain states, characteristics of mechanical properties, and limit states of hydraulic equipment of HPPs. The issues of calculation and experimental evaluation of hydro turbine’s resource, which limit the safety of HPPs, are considered. The features of technical diagnosis of hydraulic turbines are considered; characteristic defects and damages are described. The main provisions of the estimated residual life of hydro turbines are presented. The results of the risk estimates of HPPs and hydro turbine resource are given

    Investigation of the Stress-Strain State of Crane Beams in Normal Operating Modes

    Get PDF
    Представлены результаты конечно-элементного исследования напряженно- деформированного состояния подкрановых балок в штатных режимах эксплуатации при отсутствии усталостных трещин, дефектов и повреждений. По результатам проведенных расчетов получены данные распределения интенсивности напряжений и компонент тензора напряжений, возникающих в верхней зоне стенки подкрановой балки по ее длине при различных величинах эксцентриситета нагружения, обусловленного смещением рельса от вертикальной оси сечения балки. Установлены закономерности напряженно- деформированного состояния стенки балки от ряда факторовThe results of finite element studies of the stress-strain state of crane beams in normal operating modes in the absence of fatigue cracks, defects and damages are presented. The distributions of the stress intensity and the component of stress tensor, arisen in the upper zone of crane beams wall along its length under different values of the eccentricity of load, caused by the rail shift from the vertical axis of the beam section, were obtained on the basis of performed calculations. The regularities of stress-strain state of beam wall by a number of factors were determine

    Numerical simulation of deformation behavior of aluminum alloy sheets under processing by groove pressing method

    No full text
    The results of theoretical estimation of capabilities of the material structure modification of 1560 aluminum alloy sheets under processing by severe plastic deformation are presented in this paper. Severe plastic deformation of flat specimens is effected by the constrained groove pressing method in original dies with trapezoidal teeth. The numerical simulation results of the sheet specimen treatment process by severe plastic deformation were used for dies designing. The stress-strain state of flat aluminum alloy specimens and the steel dies at high processing temperature, support reaction force during pressing and the degrees of plastic strain accumulation at the optimum mode of pressing were estimated. The main numerical result is the value of accumulated plastic strain in the specimen per one pressing cycle which is about 1.14. Large degrees of strain are the reasons of grain structure and material texture changes, which leads to inevitable change of its physical-mechanical properties. Increasing the number of pressing cycles leads to proportional increase of the degree of accumulated plastic strain

    Numerical simulation of deformation behavior of aluminum alloy sheets under processing by groove pressing method

    No full text
    The results of theoretical estimation of capabilities of the material structure modification of 1560 aluminum alloy sheets under processing by severe plastic deformation are presented in this paper. Severe plastic deformation of flat specimens is effected by the constrained groove pressing method in original dies with trapezoidal teeth. The numerical simulation results of the sheet specimen treatment process by severe plastic deformation were used for dies designing. The stress-strain state of flat aluminum alloy specimens and the steel dies at high processing temperature, support reaction force during pressing and the degrees of plastic strain accumulation at the optimum mode of pressing were estimated. The main numerical result is the value of accumulated plastic strain in the specimen per one pressing cycle which is about 1.14. Large degrees of strain are the reasons of grain structure and material texture changes, which leads to inevitable change of its physical-mechanical properties. Increasing the number of pressing cycles leads to proportional increase of the degree of accumulated plastic strain

    Characteristic features of physical and mechanical properties of ultrafine-grained Al–Mg alloy 1560

    Get PDF
    Specimens of Al–Mg alloy 1560 of ultrafine-grained structure were obtained by the method of severe plastic deformation based on multiple equal-channel angular pressing. Impact on physical and mechanical properties of the processed material and fracture pattern of specimens was studied. Tensile tests showed an increase of the offset yield strength and resistance to rupture with decrease in the ultimate deformation. The obtained specimens have increased microhardness values compared to the initial ones. It was established that the last cycle of pressing determines the structural orientation of macroscopic shear bands occurring at an angle to the specimen longitudinal axis while passing connection of channels. It affects the physical and mechanical properties of the material and fracture pattern. The quality control of the obtained specimens by the method of ultrasonic defectoscopy and X-ray tomography confirmed the absence of macroand microdefects when following the matched optimal regime of processing

    Numerical simulation of deformation behavior of aluminum alloy sheets under processing by groove pressing method

    No full text
    The results of theoretical estimation of capabilities of the material structure modification of 1560 aluminum alloy sheets under processing by severe plastic deformation are presented in this paper. Severe plastic deformation of flat specimens is effected by the constrained groove pressing method in original dies with trapezoidal teeth. The numerical simulation results of the sheet specimen treatment process by severe plastic deformation were used for dies designing. The stress-strain state of flat aluminum alloy specimens and the steel dies at high processing temperature, support reaction force during pressing and the degrees of plastic strain accumulation at the optimum mode of pressing were estimated. The main numerical result is the value of accumulated plastic strain in the specimen per one pressing cycle which is about 1.14. Large degrees of strain are the reasons of grain structure and material texture changes, which leads to inevitable change of its physical-mechanical properties. Increasing the number of pressing cycles leads to proportional increase of the degree of accumulated plastic strain
    corecore