31 research outputs found

    Production of the Doubly Charmed Baryons at the SELEX experiment -- The double intrinsic charm approach

    Full text link
    The high production rate and xF>0.33\langle x_{F} \rangle > 0.33 of the doubly charmed baryons measured by the SELEX experiment is not amenable to perturbative QCD analysis. In this paper we calculate the production of the doubly heavy baryons with the double intrinsic charm Fock states whose existence is rigorously predicted by QCD. The production rate and the longitudinal momentum distribution are both reproduced. We also show that the production rates of the doubly charmed baryons and double J/ψJ/\psi production observed by NA3 collaboration are comparable. Recent experimental results are reviewed. The production cross section of the doubly charmed baryons at a fixed-target experiment at the LHC is presented.Comment: The text is as published in Physics Letters

    Production of two-dimensional porous TiNi-based powder material by diffusion sintering and electron-beam processing

    Get PDF
    The paper addresses the study of the surface condition of two-dimensional porous TiNi-based powder materials produced by diffusion sintering and electron-beam processing. Methods of production of two-dimensional TiNibased materials to be used for the purposes of non-destructive testing have been proven. The surface condition of the produced materials is described by scanning electron microscopy and interference profilometry

    Preparation of porous TiNi-Ti alloy by diffusion sintering method and study of its composition, structure and martensitic transformations

    Get PDF
    The study demonstrates a method for controlling not only the phase composition but also the atomic composition of TiNi matrix in porous TiNi-Ti alloys developed for biomedical uses as implants. The alloys were obtained from TiNi powder which was sintered with Ti powder added at as much as 0–10 at%. The structure, phase and chemical composition of the produced TiNi-Ti alloys was investigated with respect to the amount of Ti added into the material. It is shown that in the sintered product containing 5 at% and more of Ti additive, the composition of its TiNi matrix becomes close to equiatomic (with Ti:Ni atomic ratio ~1), and the excessive Ti precipitates as secondary phases Ti2Ni and Ti3Ni4. In parallel, with increase in Ti ad- ditive from 0–10 at%, the structure of the precipitating Ti2Ni type phases changes its morphology from separate spherical or pyramidal precipitates to large dendritic formations. The direct martensitic trans- formation from austenite to martensite in all the samples was found to proceed in two stages and through the R-phase (B2→R→B19′). Thermoresistive analysis demonstrated that TiNi-Ti samples with 5 and more at% of Ti had their characteristic starting temperature of martensite transition stabilizing at ~57 °C (330 K). This implies that the sample with 5 at% of Ti additive exhibited desired martensite transition temperatures, while containing a minimum concentration of secondary-phase precipitates in its matrix which deteriorate its properties. Thus, for the 곙rst time, we show that a very simple preparation approach based on sintering powders of TiNi and Ti is capable of producing porous TiNi-Ti alloys with properties optimized for fabricating bone implants

    The Effect of Cobalt on the Deformation Behaviour of a Porous TiNi-Based Alloy Obtained by Sintering

    No full text
    This research investigates the effect of cobalt on the deformation behaviour of a porous TiNi-based alloy that was obtained by sintering. Porous TiNi-based alloys with cobalt additives, accounting for 0–2 at. % and with a pitch of 0.5, were obtained. The structural-phase state of the porous material was researched by X-ray structural analysis. The effect of different amounts of Co (used as an alloying additive) on the deformation behaviour was investigated by tensile to fracture. The fractograms of fracture of the experimental samples were analysed using scanning electron microscopy. For the first time, the present research shows a diagram of the deformation of a porous TiNi-based alloy that was obtained by sintering under tensile. The stages of deformation were described according to the physical nature of the processes taking place. The effect of the cobalt-alloying additive on the change in the critical stress of martensitic shear was investigated. It was found that the behaviour of the concentration dependency of stress at concentrations under 1.5 at. % Co was determined by an increase in the stress in the TiNi solid solution. This phenomenon is attributed to the arrangement of Co atoms on the Ti sublattice, as well as an increase in the fraction of the B19′ phase in the matrix. The steep rise of the developed forces on the concentration dependency of the martensitic shear stress at 2 at. % Co is presumably attributed to the precipitation hardening of austenite due to the precipitation of finely dispersed coherent Ti3Ni4 phase following the decrease of fraction of martensite. An analysis of fractograms showed that as more cobalt was added, areas of fracture with traces of martensite plates of the B19′ phase started to prevail. At 2 at. % Co these plates fill almost the entire area of the fracture. The research findings presented in this work are of great importance, since they can be used to achieve the set of physical and mechanical properties required for the development of biocompatible materials for implantology

    >

    No full text

    Thermodynamics of Phase and Chemical Equilibrium in the Processes of Biodiesel Fuel Synthesis in Subcritical and Supercritical Methanol

    No full text
    Thermodynamic data (critical parameters, enthalpy, entropy) were calculated for the monoglycerides, diglycerides, and triglycerides of fatty acids (palmitic, oleic and linoleic), free fatty acids, and methyl esters of fatty acids, which are involved in the transesterification of vegetable oils with lower alcohols. Phase diagrams of the reaction mixtures were calculated and reaction conditions providing supercritical state of the reaction mixture were selected for transesterification of triglycerides in various lower alcohols. Chemical equilibrium of the methanol transesterification of simple and mixed fatty acid triglycerides was studied in a wide range of temperatures, pressures, and ratios of initial components, including the region of supercritical state of the reaction mixture. Calculation of the phase equilibrium and equilibrium composition of the reaction products obtained by transesterification of triglycerides with lower alcohols allowed choosing the optimal reaction conditions for practical application

    >

    No full text

    >

    No full text
    corecore