17 research outputs found

    Optical Properties of Silicon Nanowires Fabricated by Environment-Friendly Chemistry

    Get PDF
    Silicon nanowires (SiNWs) were fabricated by metal-assisted chemical etching (MACE) where hydrofluoric acid (HF), which is typically used in this method, was changed into ammonium fluoride (NH4F). The structure and optical properties of the obtained SiNWs were investigated in details. The length of the SiNW arrays is about 2 μm for 5 min of etching, and the mean diameter of the SiNWs is between 50 and 200 nm. The formed SiNWs demonstrate a strong decrease of the total reflectance near 5-15 % in the spectral region λ < 1 μm in comparison to crystalline silicon (c-Si) substrate. The interband photoluminescence (PL) and Raman scattering intensities increase strongly for SiNWs in comparison with the corresponding values of the c-Si substrate. These effects can be interpreted as an increase of the excitation intensity of SiNWs due to the strong light scattering and the partial light localization in an inhomogeneous optical medium. Along with the interband PL was also detected the PL of SiNWs in the spectral region of 500-1100 nm with a maximum at 750 nm, which can be explained by the radiative recombination of excitons in small Si nanocrystals at nanowire sidewalls in terms of a quantum confinement model. So SiNWs, which are fabricated by environment-friendly chemistry, have a great potential for use in photovoltaic and photonics applications

    Localization of the E. coli Dps protein molecules in a silicon wires under removal of residual salt

    Get PDF
    The work is related to the removal of residual salts in hybrid structures formed as a result of silicon wires arrays combining with a nanomaterial of natural origin – bacterial ferritin-like protein Dps. The study of the morphology and composition of the surface and the bulk part of the hybrid structure as a result of combination and subsequent washing in water was carried out. The method of metal-assisted wet chemical etching was used to obtain silicon wires arrays. To obtain recombinant protein, Escherichia coli BL21*(DE3) cells with chromatographic purification were used as producers. The combination of silicon wires with protein molecules was carried out by layering them in laboratory conditions, followed by drying. The residual salt found earlier in the hybrid material was removed by washing in water. The resulting hybrid material was studied by scanning electron microscopy and X-ray photoelectron spectroscopy. A well-proven complementary combination of scanning electron microscopy and X-ray photoelectron spectroscopy together with ion etching was used to study the morphology of the hybrid material “silicon wires – bacterial protein Dps” and the composition with physico-chemical state respectively. In arrays of silicon wires with a wire diameter of about 100 nm and a distance between them from submicron to nanometer sizes, protein was found as a result of layering and after treatment in water. At the same time, the amount of residual NaCl salt is minimized on the surface of the hybrid structure and in its volume. The obtained data can be used in the development of coating technology for the silicon wires developed surface available for functionalization with controlled delivery of biohybrid materia

    Raman Signal Enhancement Tunable by Gold-Covered Porous Silicon Films with Different Morphology

    No full text
    The ease of fabrication, large surface area, tunable pore size and morphology as well surface modification capabilities of a porous silicon (PSi) layer make it widely used for sensoric applications. The pore size of a PSi layer can be an important parameter when used as a matrix for creating surface-enhanced Raman scattering (SERS) surfaces. Here, we evaluated the SERS activity of PSi with pores ranging in size from meso to macro, the surface of which was coated with gold nanoparticles (Au NPs). We found that different pore diameters in the PSi layers provide different morphology of the gold coating, from an almost monolayer to 50 nm distance between nanoparticles. Methylene blue (MB) and 4-mercaptopyridine (4-MPy) were used to describe the SERS activity of obtained Au/PSi surfaces. The best Raman signal enhancement was shown when the internal diameter of torus-shaped Au NPs is around 35 nm. To understand the role of plasmonic resonances in the observed SERS spectrum, we performed electromagnetic simulations of Raman scattering intensity as a function of the internal diameter. The results of these simulations are consistent with the obtained experimental data
    corecore