8 research outputs found

    Possibility of applying the remediation process of soil polluted with heavy metals and arsenic using autochthonuos plant species with their use for energy

    Get PDF
    Π£ овој Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ јС ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°Π½ стСпСн ΠΊΠΎΠ½Ρ‚Π°ΠΌΠΈΠ½Π°Ρ†ΠΈΡ˜Π΅ Ρ‚Π΅ΡˆΠΊΠΈΠΌ ΠΌΠ΅Ρ‚Π°Π»ΠΈΠΌΠ° ΠΎΠ΄Π°Π±Ρ€Π°Π½Π΅ Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π΅ Π·Π° ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅, са Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ могућности ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π΅ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΡ… Π°ΡƒΡ‚ΠΎΡ…Ρ‚ΠΎΠ½ΠΈΡ… Π±ΠΈΡ™Π½ΠΈΡ… врста којС су сС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎ Ρ€Π°Π·Π²ΠΈΠ»Π΅ Π·Π° процСс Ρ„ΠΈΡ‚ΠΎΡ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜Π΅ која Π½Π΅ Π·Π°Ρ…Ρ‚Π΅Π²Π° Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΈΡ˜Π° Ρ„ΠΈΠ½Π°Π½ΡΠΈΡ˜ΡΠΊΠ° ΡƒΠ»Π°Π³Π°ΡšΠ° ΠΈ Π°Π½Π°Π»ΠΈΠ·Π° аспСката ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ° биомасС која ΠΏΠΎΡ‚ΠΈΡ‡Π΅ ΠΈΠ· Ρ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜Π΅ ΠΎΠ΄Π°Π±Ρ€Π°Π½Π΅ Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π΅ Ρƒ СнСргСтскС сврхС. ΠžΠ΄Π°Π±Ρ€Π°Π½Π° јС Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π° ΠΎΠ΄Π»Π°Π³Π°Π»ΠΈΡˆΡ‚Π° ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜ΡΠΊΠΎΠ³ ΠΎΡ‚ΠΏΠ°Π΄Π°, Ρ…Π΅ΠΌΠΈΡ˜ΡΠΊΠ΅ ΠΈΠ΄ΡƒΡΡ‚Ρ€ΠΈΡ˜Π΅ β€žΠžΠ±ΠΎΡ˜Π΅Π½Π° ΠΌΠ΅Ρ‚Π°Π»ΡƒΡ€Π³ΠΈΡ˜Π°β€œ, акционарског Π΄Ρ€ΡƒΡˆΡ‚Π²Π° Π·Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡšΡƒ ΠΈ ΠΏΡ€Π΅Ρ€Π°Π΄Ρƒ Ρ†ΠΈΠ½ΠΊΠ° β€žΠ—ΠΎΡ€ΠΊΠ°β€œ, Π¨Π°Π±Π°Ρ† Ρƒ Ρ€Π΅ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΠΈΡ€Π°ΡšΡƒ. Π‘ΠΈΡΡ‚Π΅ΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΡ˜ΠΎΠΌ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΡ… сазнања ΠΈΠ· области ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π°ΠΌΠ° ΠΊΠΎΠ½Ρ‚Π°ΠΌΠΈΠ½ΠΈΡ€Π°Π½ΠΈΡ… Ρ‚Π΅ΡˆΠΊΠΈΠΌ ΠΌΠ΅Ρ‚Π°Π»ΠΈΠΌΠ° ΠΈ могућности ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ° Ρƒ СнСргСтскС сврхС биомасС Π±ΠΈΡ™Π½ΠΎΠ³ ΠΏΠΎΡ€Π΅ΠΊΠ»Π° ΠΈΠ· Ρ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜Π΅ ΠΎΠ²Π°ΠΊΠ²ΠΈΡ… Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π° ΠΈ СкспСримСнталном ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΎΠΌ прСтпоставки ΠΎ Π·Π°Π³Π°Ρ’Π΅ΡšΡƒ ΠΎΠ΄Π°Π±Ρ€Π°Π½Π΅ Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π΅ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½ΠΈΠΌ Π·Π°Π³Π°Ρ’ΡƒΡ˜ΡƒΡ›ΠΈΠΌ Π΅Π»Π΅ΠΌΠ΅Π½Π°Ρ‚ΠΈΠΌΠ° Ρƒ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Ρƒ Π½Π° Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜ΠΈ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ°, првСнствСно ΠΌΠ΅Ρ‚Π°Π»ΠΈΠΌΠ° ΠΎΠ»ΠΎΠ²ΠΎΠΌ (Pb), ΠΊΠ°Π΄ΠΌΠΈΡ˜ΡƒΠΌΠΎΠΌ (Cd), Π±Π°ΠΊΡ€ΠΎΠΌ (Cu), Ρ†ΠΈΠ½ΠΊΠΎΠΌ (Zn) ΠΈ ΠΌΠ΅Ρ‚Π°Π»ΠΎΠΈΠ΄ΠΎΠΌ арсСном (As), са ΠΏΡ€ΠΎΡ†Π΅Π½ΠΎΠΌ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π°ΡƒΡ‚ΠΎΡ…Ρ‚ΠΎΠ½ΠΈΡ… Π±ΠΈΡ™Π½ΠΈΡ… ΠΊΡƒΠ»Ρ‚ΡƒΡ€Π° са Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π΅ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ°: Ρ‚ΠΎΠΏΠΎΠ»Π° (Populus ssp.), кисСло Π΄Ρ€Π²ΠΎ (Ailanthus glandulosa L.), Π±Π°Π³Ρ€Π΅ΠΌ (false acacia, Robinia pseudoacacia L.), Π°ΠΌΠ±Ρ€ΠΎΠ·ΠΈΡ˜Π° (Artemisia artemisiifolia L.), ΠΈ Π΄ΠΈΠ²ΠΈΠ·ΠΌΠ° (Verbascum thapsus L.) којима Π±ΠΈ ΠΌΠΎΠ³Π»Π° Π΄Π° сС ΠΈΠ·Π²Ρ€ΡˆΠΈ Ρ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜Π° Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π΅, Ρ„ΠΈΡ‚ΠΎΡ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜ΠΎΠΌ, Π±ΠΈΠ»ΠΎ Ρ„ΠΈΡ‚ΠΎΠ΅ΠΊΡΡ‚Ρ€Π°ΠΊΡ†ΠΈΡ˜ΠΎΠΌ ΠΈΠ»ΠΈ Ρ„ΠΈΡ‚ΠΎΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΡ˜ΠΎΠΌ, са нагласком Π½Π° СнСргСтском ΠΈΡΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΡƒ биомасС испитиваних Π±ΠΈΡ™Π½ΠΈΡ… ΠΊΡƒΠ»Ρ‚ΡƒΡ€Π° насталих Ρ„ΠΈΡ‚ΠΎΡ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜ΠΎΠΌ Π½Π° Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜ΠΈ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΈ с Ρ‚ΠΈΠΌ Ρƒ Π²Π΅Π·ΠΈ ΠΏΠΎΠ²Π΅Π·Π°Π½ΠΈΡ… процСса, ΠΈΠ·Π²Ρ€ΡˆΠ΅Π½Π° јС Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠΎΠ³ΡƒΡ›ΠΈΡ… Ρ€ΠΈΠ·ΠΈΠΊΠ° ΠΈ користи ΠΎΠ΄ ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π΅ добијСнС биомасС ΠΊΠ°ΠΎ Π³ΠΎΡ€ΠΈΠ²Π°. Π₯Смијским ΠΈ инструмСнталним ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠ° јС ΡƒΡ‚Π²Ρ€Ρ’Π΅Π½ΠΎ Π΄Π° јС Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π° ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° Π½Π° којој јС ΠΎΠ΄Π»Π°Π³Π°Π½ ΠΎΡ‚ΠΏΠ°Π΄Π½ΠΈ Ρ˜Π°Ρ€ΠΎΡΠΈΡ‚ Ρ‚Π°Π»ΠΎΠ³ ΠΏΠΎΡ€Π΅ΠΊΠ»ΠΎΠΌ ΠΈΠ· ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜ΡΠΊΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡšΠ΅ Ρ†ΠΈΠ½ΠΊΠ° ΠΈ ΠΊΠ°Π΄ΠΌΠΈΡ˜ΡƒΠΌΠ° Ρ…ΠΈΠ΄Ρ€ΠΎΠΌΠ΅Ρ‚Π°Π»ΡƒΡ€ΡˆΠΊΠΈΠΌ поступком Π½Π° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π΅ ΠΈ мСшан ΠΈ ΠΏΠΎΠΊΡ€ΠΈΠ²Π°Π½ Π·Π΅ΠΌΡ™ΠΎΠΌ, Π·Π°Π³Π°Ρ’Π΅Π½Π° Ρ‚Π΅ΡˆΠΊΠΈΠΌ ΠΈ токсичним ΠΌΠ΅Ρ‚Π°Π»ΠΈΠΌΠ°, ΠΎΠ»ΠΎΠ²ΠΎΠΌ (Pb), vi ΠΊΠ°Π΄ΠΌΠΈΡ˜ΡƒΠΌΠΎΠΌ (Cd), Π±Π°ΠΊΡ€ΠΎΠΌ (Cu), Ρ†ΠΈΠ½ΠΊΠΎΠΌ (Zn), Π½ΠΈΠΊΠ»ΠΎΠΌ (Ni), Ρ…Ρ€ΠΎΠΌΠΎΠΌ (Cr) ΠΈ ΠΌΠ΅Ρ‚Π°Π»ΠΎΠΈΠ΄ΠΎΠΌ арсСном (As). ΠšΠΎΠ½Ρ‚Π°ΠΌΠΈΠ½Π°Ρ†ΠΈΡ˜Π° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° Ρ‚Π΅ΡˆΠΊΠΈΠΌ ΠΌΠ΅Ρ‚Π°Π»ΠΈΠΌΠ° Ρƒ области ΠΊΠΎΡ€Π΅Π½Π° испитиваних Π±ΠΈΡ™Π½ΠΈΡ… врста: Artemisia artemisiifolia L., Ailanthus glandulosa L., false acacia, Populus ssp. ΠΈ Verbascum thapsus L. јС Π±ΠΈΠ»Π° Ρƒ слСдСћСм ΠΎΠΏΠ°Π΄Π°Ρ˜ΡƒΡ›Π΅ΠΌ Π½ΠΈΠ·Ρƒ: Zn>>Pb>>Cu>Cd>As>Ni>Cr. Π‘Ρ€Π΅Π΄ΡšΠ΅ врСдности ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° ΠΌΠ΅Ρ‚Π°Π»Π°, Pb, Cd, Zn, Cu, Cr, Ni ΠΈ As, Ρƒ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Ρƒ Ρƒ ΠΎΠΊΠΎΠ»ΠΈΠ½ΠΈ ΠΊΠΎΡ€Π΅Π½Π° испитиваних Π±ΠΈΡ™Π½ΠΈΡ… врста Ρ‚ΠΎΠΊΠΎΠΌ 7 Π³ΠΎΠ΄ΠΈΠ½Π° ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° су: 22,948.64 mg Pb/kg, 865.36 mg Cd/kg, 85,301.73 mg Zn/kg, 3,193.32 mg Cu/kg, 50.72 mg Ni/kg, 41.67 mg Cr/kg ΠΈ 617.94 mg As/kg. Π‘Ρ€Π΅Π΄ΡšΠ΅ врСдности ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° Pb, Cd, Zn, Cu, Ni, Cr ΠΈ As су Π±ΠΈΠ»Π΅ Ρƒ ΠΏΠ°Π΄Ρƒ Ρƒ односу Π½Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π΅ ΠΎΠ²ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Π°Ρ‚Π° Ρƒ ΠΏΡ€Π²ΠΎΡ˜ Π³ΠΎΠ΄ΠΈΠ½ΠΈ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° Π·Π° 36.83% Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Pb, 25.48% Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Cd, 15.73% Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Zn, 23.32% Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Ni, 96.13% Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Cr, 36.85% Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ As ΡˆΡ‚ΠΎ јС ΡƒΠΊΠ°Π·ΠΈΠ²Π°Π»ΠΎ Π΄Π° сС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΈ процСси Π²Π΅Π·Π°Π½ΠΎ Π·Π° Ρ„ΠΈΡ‚ΠΎΡ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜Ρƒ ΠΎΠ΄Π²ΠΈΡ˜Π°Ρ˜Ρƒ Π½Π° ΠΈΡΠΏΠΈΡ‚ΠΈΠ²Π°Π½ΠΎΡ˜ Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜ΠΈ. Π£ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Cu нијС дошло Π΄ΠΎ Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΈΡ˜ΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅Π½Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° Ρƒ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Ρƒ...In this thesis has studied the degree of contamination by heavy metals of the selected location for research, with the analysis of the possible use of existing autochthonous plant species that are naturally developed for phytoremediation process, that does not require significant financial investment, and analysis of the aspects of the use of biomass, originating from remediation of the selected location, for energy purposes. For research is chosen the location where was disposed industrial waste from the chemical industry, "Non-ferrous metallurgy", a joint stock company for the production and processing of zinc "Zorka", Ε abac in restructuring. By systematization of existing knowledge in the field of the heavy metals contaminated sites and possibilities of using biomass for energy purposes of plant origin from the remediation of such sites and by experimental verification of assumptions about the pollution of the selected location, research identified polluting elements in the soil at the research location, primarily metals, lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn) and metalloid arsenic (As), with an assessment of the potential of native wild plants from the research location: poplar (Populus ssp.), ailanthus (Ailanthus glandulosa L.), false acacia (acacia, Robinia pseudoacacia L.), ragweed (Artemisia artemisiifolia L.), and mullein (Verbascum thapsus L.) which could be enforced site remediation, by phytoremediation, phytoextraction or phytostabilisation, with an emphasis on energy utilization of biomass from tested native wild plants, created by phytoremediation on the research location and in this regard related processes, an analysis of the potential risks and benefits obtained from the use of biomass as fuel. By chemical and instrumental methods was found that the location of research, in which the jarosite waste, as residue waste originating from industrial production of zinc and cadmium by hydrometallurgy process, has disposed, mixed and cover with soil, is polluted with toxic heavy metals, lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn), nickel (Ni), chromium (Cr) and metalloid arsenic (As). Soil contamination by heavy metals in the rhizosphere of tested plant species: x Artemisia artemisiifolia L., Ailanthus glandulosa L., false acacia, Populus ssp. and Verbascum thapsus L. was in the following decreasing order: Zn>>Pb>>Cu>Cd>As>Ni>Cr. Mean values of metal concentrations, Pb, Cd, Zn, Cu, Cr, Ni ΠΈ As, in the the rhizosphere of tested plant species during the 7 years of research are: 22,948.64 mg Pb/kg, 865.36 mg Cd/kg, 85,301.73 mg Zn/kg, 3,193.32 mg Cu/kg, 50.72 mg Ni/kg, 41.67 mg Cr/kg and 617.94 mg As/kg. Mean values of Pb, Cd, Zn, Cu, Ni, Cr and As were decreased compared to the concentrations of these elements in the first year, and that, for 36.83% in the case of Pb, 25.48% in the case of Cd, 15.73% in the case of Zn, 23.32 % in the case of Ni, 96.13% in the case of Cr, 36.85% in the case of As, which indicated that natural processes related to phytoremediation, taking place on the examined site. In the case of Cu there has been no significant change in concentration in the soiL..

    Fitoremedijacijski potencijal divljih biljnih vrsta koje rastu na zemljiΕ‘tu kontaminiranom teΕ‘kim metalima

    Get PDF
    Phytoremediation is an emerging technology that employs higher plants to cleanup contaminated environments, including metal-polluted soils. Because it produces a biomass rich in extracted toxic metals, further treatment of this biomass is necessary. The aim of our study was to assess the five-year potential of the following native wild plants to produce biomass and remove heavy metals from a polluted site: poplar (Populus ssp.), ailanthus (Ailanthus glandulosa L.), false acacia (Robinia pseudoacacia L.), ragweed (Artemisia artemisiifolia L.), and mullein (Verbascum thapsus L). Average soil contamination with Pb, Cd, Zn, Cu, Ni, Cr, and As in the root zone was 22,948.6 mg kg-1, 865.4 mg kg-1, 85,301.7 mg kg-1, 3,193.3 mg kg-1, 50.7 mg kg-1, 41.7 mg kg-1,and 617.9 mg kg-1, respectively. We measured moisture and ash content, concentrations of Pb, Cd, Zn, Cu, Ni, Cr, and As in the above-ground parts of the plants and in ash produced by combustion of the plants, plus gross calorific values. The plants\u27 phytoextraction and phytostabilisation potential was evaluated based on their bioconcentration factor (BCF) and translocation factor (TF). Mullein was identified as a hyperaccumulator for Cd. It also showed a higher gross calorific value (19,735 kJ kg-1) than ragweed (16,469 kJ kg-1).The results of this study suggest that mullein has a great potential for phytoextraction and for biomass generation, and that ragweed could be an effective tool of phytostabilisation.Fitoremedijacija je tehnologija kojom se pomoΔ‡u biljaka zemljiΕ‘ta čiste od zagaΔ‘ivala, uključujuΔ‡i metale. S obzirom na to da se stvara biomasa bogata ekstrahiranim toksičnim metalima, potrebno ju je dodatno obraditi. Cilj ovoga petogodiΕ‘njeg istraΕΎivanja bio je procijeniti potencijal sljedeΔ‡ih divljih biljnih vrsta za proizvodnju biomase i za uklanjanje teΕ‘kih metala iz zagaΔ‘enog zemljiΕ‘ta: topole (Populus ssp.), pajasena (Ailanthus glandulosa L.), bagrema (Robinia pseudoacacia L.), ambrozije (Artemisia artemisiifolia L.) i divizme (Verbascum thapsus L.). Prosječno onečiΕ‘Δ‡enje zemljiΕ‘ta olovom, kadmijem, cinkom, bakrom, niklom i kromom te arsenom u zoni korijena bilo je 22.948,6 mg kg-1, 865,4 mg kg-1, 85.301,7 mg kg-1, 3.193,3 mg kg-1, 50,7 mg kg-1 i 41,7 mg kg-1 te 617,9 mg kg-1. TakoΔ‘er su izmjereni sadrΕΎaj vlage i pepela nastalog paljenjem biljaka, sadrΕΎaj Pb, Cd, Zn, Cu, Ni, Cr i As u nadzemnim dijelovima biljaka i njihovu pepelu te bruto toplotna vrijednost. Fitoekstrakcijski i fitostabilizacijski potencijal utvrΔ‘en je za divizmu i ambroziju na temelju faktora biokoncentracije (BCF) i faktora translokacije (TF). Divizma se je pokazala kao hiperakumulator kadmija, a pokazala je i veΔ‡u gornju toplotnu moΔ‡ (19.735 kJ kg-1) u odnosu na ambroziju (16.469 kJ kg-1). Rezultati ovog istraΕΎivanja upuΔ‡uju na to da divizma ima potencijala za fitoekstrakciju i za proizvodnju biomase, a da ambrozija moΕΎe biti djelotvorna u remedijaciji zemljiΕ‘ta fitostabilizacijom

    Potential usage of fly ash and bottom ash from thermal power plant 'Nikola Tesla' landfill, Serbia

    Get PDF
    U Srbiji je pepeo dugo bio označen kao opasan otpad. Usvajanjem odgovarajuΔ‡ih zakona, pepeo je postao otpad sa upotrebnom vrednoΕ‘Δ‡u, Ε‘to je omoguΔ‡ilo razmatranje moguΔ‡nosti njegovog koriΕ‘Δ‡enja. U ovom radu je izvrΕ‘ena analiza sastava pepela i Ε‘ljake koji su odloΕΎeni na deponiju termoelektrane 'Nikola Tesla A'. Trideset uzoraka, podeljenih u tri seta, analizirani su na mikroelemente As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V i Zn. Procenjene su varijacije u kvalitetu, i na osnovu dobijenih rezultata procenjena je moguΔ‡nost daljeg koriΕ‘Δ‡enja u proizvodnji cementa i betona.In Serbia, the ash from power plants has long been labelled as hazardous waste. With the adoption of the appropriate legislation this ash became waste with the potential usage. In this paper an analysis of the fly ash and bottom ash composition, which are disposed of in the power plant 'Nikola Tesla A' landfill, is presented. Thirty samples, divided into three sets, were analyzed for trace elements As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V and Zn. The first and second set of samples were taken at the depth of 0.0-0.6 m, from cassette III, at the place of waste discharge (set I) and in the centre of the cassette (set II).The third set of samples was taken from the same cassette spot but at the different depth. The estimated variations in quality within individual sets, as well as the comparison between sets I and II, were performed. The repeatability of results by the depth of cassette (set III) was also analyzed. The mixture consisting of 79.4% limestone, 17% clay, 0.5% sand, 0.55% iron ore, 0.55% of steel mill waste and 2% ash from the thermal power plant 'Nikola Tesla A' was adopted as the reputable mixture for cement making. For concrete making, the same cement mixture was used but with 2.1% of the same ash material added. The results showed possibility of further fly and bottom ash use as the cement and concrete material

    Possibility of applying the remediation process of soil polluted with heavy metals and arsenic using autochthonuos plant species with their use for energy

    No full text
    Π£ овој Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ јС ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°Π½ стСпСн ΠΊΠΎΠ½Ρ‚Π°ΠΌΠΈΠ½Π°Ρ†ΠΈΡ˜Π΅ Ρ‚Π΅ΡˆΠΊΠΈΠΌ ΠΌΠ΅Ρ‚Π°Π»ΠΈΠΌΠ° ΠΎΠ΄Π°Π±Ρ€Π°Π½Π΅ Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π΅ Π·Π° ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅, са Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ могућности ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π΅ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΡ… Π°ΡƒΡ‚ΠΎΡ…Ρ‚ΠΎΠ½ΠΈΡ… Π±ΠΈΡ™Π½ΠΈΡ… врста којС су сС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎ Ρ€Π°Π·Π²ΠΈΠ»Π΅ Π·Π° процСс Ρ„ΠΈΡ‚ΠΎΡ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜Π΅ која Π½Π΅ Π·Π°Ρ…Ρ‚Π΅Π²Π° Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΈΡ˜Π° Ρ„ΠΈΠ½Π°Π½ΡΠΈΡ˜ΡΠΊΠ° ΡƒΠ»Π°Π³Π°ΡšΠ° ΠΈ Π°Π½Π°Π»ΠΈΠ·Π° аспСката ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ° биомасС која ΠΏΠΎΡ‚ΠΈΡ‡Π΅ ΠΈΠ· Ρ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜Π΅ ΠΎΠ΄Π°Π±Ρ€Π°Π½Π΅ Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π΅ Ρƒ СнСргСтскС сврхС. ΠžΠ΄Π°Π±Ρ€Π°Π½Π° јС Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π° ΠΎΠ΄Π»Π°Π³Π°Π»ΠΈΡˆΡ‚Π° ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜ΡΠΊΠΎΠ³ ΠΎΡ‚ΠΏΠ°Π΄Π°, Ρ…Π΅ΠΌΠΈΡ˜ΡΠΊΠ΅ ΠΈΠ΄ΡƒΡΡ‚Ρ€ΠΈΡ˜Π΅ β€žΠžΠ±ΠΎΡ˜Π΅Π½Π° ΠΌΠ΅Ρ‚Π°Π»ΡƒΡ€Π³ΠΈΡ˜Π°β€œ, акционарског Π΄Ρ€ΡƒΡˆΡ‚Π²Π° Π·Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡšΡƒ ΠΈ ΠΏΡ€Π΅Ρ€Π°Π΄Ρƒ Ρ†ΠΈΠ½ΠΊΠ° β€žΠ—ΠΎΡ€ΠΊΠ°β€œ, Π¨Π°Π±Π°Ρ† Ρƒ Ρ€Π΅ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΠΈΡ€Π°ΡšΡƒ. Π‘ΠΈΡΡ‚Π΅ΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΡ˜ΠΎΠΌ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΡ… сазнања ΠΈΠ· области ΡƒΠΏΡ€Π°Π²Ρ™Π°ΡšΠ° Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π°ΠΌΠ° ΠΊΠΎΠ½Ρ‚Π°ΠΌΠΈΠ½ΠΈΡ€Π°Π½ΠΈΡ… Ρ‚Π΅ΡˆΠΊΠΈΠΌ ΠΌΠ΅Ρ‚Π°Π»ΠΈΠΌΠ° ΠΈ могућности ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ° Ρƒ СнСргСтскС сврхС биомасС Π±ΠΈΡ™Π½ΠΎΠ³ ΠΏΠΎΡ€Π΅ΠΊΠ»Π° ΠΈΠ· Ρ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜Π΅ ΠΎΠ²Π°ΠΊΠ²ΠΈΡ… Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π° ΠΈ СкспСримСнталном ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΎΠΌ прСтпоставки ΠΎ Π·Π°Π³Π°Ρ’Π΅ΡšΡƒ ΠΎΠ΄Π°Π±Ρ€Π°Π½Π΅ Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π΅ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½ΠΈΠΌ Π·Π°Π³Π°Ρ’ΡƒΡ˜ΡƒΡ›ΠΈΠΌ Π΅Π»Π΅ΠΌΠ΅Π½Π°Ρ‚ΠΈΠΌΠ° Ρƒ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Ρƒ Π½Π° Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜ΠΈ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ°, првСнствСно ΠΌΠ΅Ρ‚Π°Π»ΠΈΠΌΠ° ΠΎΠ»ΠΎΠ²ΠΎΠΌ (Pb), ΠΊΠ°Π΄ΠΌΠΈΡ˜ΡƒΠΌΠΎΠΌ (Cd), Π±Π°ΠΊΡ€ΠΎΠΌ (Cu), Ρ†ΠΈΠ½ΠΊΠΎΠΌ (Zn) ΠΈ ΠΌΠ΅Ρ‚Π°Π»ΠΎΠΈΠ΄ΠΎΠΌ арсСном (As), са ΠΏΡ€ΠΎΡ†Π΅Π½ΠΎΠΌ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π°ΡƒΡ‚ΠΎΡ…Ρ‚ΠΎΠ½ΠΈΡ… Π±ΠΈΡ™Π½ΠΈΡ… ΠΊΡƒΠ»Ρ‚ΡƒΡ€Π° са Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π΅ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ°: Ρ‚ΠΎΠΏΠΎΠ»Π° (Populus ssp.), кисСло Π΄Ρ€Π²ΠΎ (Ailanthus glandulosa L.), Π±Π°Π³Ρ€Π΅ΠΌ (false acacia, Robinia pseudoacacia L.), Π°ΠΌΠ±Ρ€ΠΎΠ·ΠΈΡ˜Π° (Artemisia artemisiifolia L.), ΠΈ Π΄ΠΈΠ²ΠΈΠ·ΠΌΠ° (Verbascum thapsus L.) којима Π±ΠΈ ΠΌΠΎΠ³Π»Π° Π΄Π° сС ΠΈΠ·Π²Ρ€ΡˆΠΈ Ρ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜Π° Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π΅, Ρ„ΠΈΡ‚ΠΎΡ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜ΠΎΠΌ, Π±ΠΈΠ»ΠΎ Ρ„ΠΈΡ‚ΠΎΠ΅ΠΊΡΡ‚Ρ€Π°ΠΊΡ†ΠΈΡ˜ΠΎΠΌ ΠΈΠ»ΠΈ Ρ„ΠΈΡ‚ΠΎΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΡ˜ΠΎΠΌ, са нагласком Π½Π° СнСргСтском ΠΈΡΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΡƒ биомасС испитиваних Π±ΠΈΡ™Π½ΠΈΡ… ΠΊΡƒΠ»Ρ‚ΡƒΡ€Π° насталих Ρ„ΠΈΡ‚ΠΎΡ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜ΠΎΠΌ Π½Π° Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜ΠΈ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΈ с Ρ‚ΠΈΠΌ Ρƒ Π²Π΅Π·ΠΈ ΠΏΠΎΠ²Π΅Π·Π°Π½ΠΈΡ… процСса, ΠΈΠ·Π²Ρ€ΡˆΠ΅Π½Π° јС Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠΎΠ³ΡƒΡ›ΠΈΡ… Ρ€ΠΈΠ·ΠΈΠΊΠ° ΠΈ користи ΠΎΠ΄ ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π΅ добијСнС биомасС ΠΊΠ°ΠΎ Π³ΠΎΡ€ΠΈΠ²Π°. Π₯Смијским ΠΈ инструмСнталним ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠ° јС ΡƒΡ‚Π²Ρ€Ρ’Π΅Π½ΠΎ Π΄Π° јС Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π° ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° Π½Π° којој јС ΠΎΠ΄Π»Π°Π³Π°Π½ ΠΎΡ‚ΠΏΠ°Π΄Π½ΠΈ Ρ˜Π°Ρ€ΠΎΡΠΈΡ‚ Ρ‚Π°Π»ΠΎΠ³ ΠΏΠΎΡ€Π΅ΠΊΠ»ΠΎΠΌ ΠΈΠ· ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜ΡΠΊΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡšΠ΅ Ρ†ΠΈΠ½ΠΊΠ° ΠΈ ΠΊΠ°Π΄ΠΌΠΈΡ˜ΡƒΠΌΠ° Ρ…ΠΈΠ΄Ρ€ΠΎΠΌΠ΅Ρ‚Π°Π»ΡƒΡ€ΡˆΠΊΠΈΠΌ поступком Π½Π° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π΅ ΠΈ мСшан ΠΈ ΠΏΠΎΠΊΡ€ΠΈΠ²Π°Π½ Π·Π΅ΠΌΡ™ΠΎΠΌ, Π·Π°Π³Π°Ρ’Π΅Π½Π° Ρ‚Π΅ΡˆΠΊΠΈΠΌ ΠΈ токсичним ΠΌΠ΅Ρ‚Π°Π»ΠΈΠΌΠ°, ΠΎΠ»ΠΎΠ²ΠΎΠΌ (Pb), vi ΠΊΠ°Π΄ΠΌΠΈΡ˜ΡƒΠΌΠΎΠΌ (Cd), Π±Π°ΠΊΡ€ΠΎΠΌ (Cu), Ρ†ΠΈΠ½ΠΊΠΎΠΌ (Zn), Π½ΠΈΠΊΠ»ΠΎΠΌ (Ni), Ρ…Ρ€ΠΎΠΌΠΎΠΌ (Cr) ΠΈ ΠΌΠ΅Ρ‚Π°Π»ΠΎΠΈΠ΄ΠΎΠΌ арсСном (As). ΠšΠΎΠ½Ρ‚Π°ΠΌΠΈΠ½Π°Ρ†ΠΈΡ˜Π° Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° Ρ‚Π΅ΡˆΠΊΠΈΠΌ ΠΌΠ΅Ρ‚Π°Π»ΠΈΠΌΠ° Ρƒ области ΠΊΠΎΡ€Π΅Π½Π° испитиваних Π±ΠΈΡ™Π½ΠΈΡ… врста: Artemisia artemisiifolia L., Ailanthus glandulosa L., false acacia, Populus ssp. ΠΈ Verbascum thapsus L. јС Π±ΠΈΠ»Π° Ρƒ слСдСћСм ΠΎΠΏΠ°Π΄Π°Ρ˜ΡƒΡ›Π΅ΠΌ Π½ΠΈΠ·Ρƒ: Zn>>Pb>>Cu>Cd>As>Ni>Cr. Π‘Ρ€Π΅Π΄ΡšΠ΅ врСдности ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° ΠΌΠ΅Ρ‚Π°Π»Π°, Pb, Cd, Zn, Cu, Cr, Ni ΠΈ As, Ρƒ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Ρƒ Ρƒ ΠΎΠΊΠΎΠ»ΠΈΠ½ΠΈ ΠΊΠΎΡ€Π΅Π½Π° испитиваних Π±ΠΈΡ™Π½ΠΈΡ… врста Ρ‚ΠΎΠΊΠΎΠΌ 7 Π³ΠΎΠ΄ΠΈΠ½Π° ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° су: 22,948.64 mg Pb/kg, 865.36 mg Cd/kg, 85,301.73 mg Zn/kg, 3,193.32 mg Cu/kg, 50.72 mg Ni/kg, 41.67 mg Cr/kg ΠΈ 617.94 mg As/kg. Π‘Ρ€Π΅Π΄ΡšΠ΅ врСдности ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° Pb, Cd, Zn, Cu, Ni, Cr ΠΈ As су Π±ΠΈΠ»Π΅ Ρƒ ΠΏΠ°Π΄Ρƒ Ρƒ односу Π½Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π΅ ΠΎΠ²ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Π°Ρ‚Π° Ρƒ ΠΏΡ€Π²ΠΎΡ˜ Π³ΠΎΠ΄ΠΈΠ½ΠΈ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° Π·Π° 36.83% Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Pb, 25.48% Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Cd, 15.73% Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Zn, 23.32% Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Ni, 96.13% Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Cr, 36.85% Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ As ΡˆΡ‚ΠΎ јС ΡƒΠΊΠ°Π·ΠΈΠ²Π°Π»ΠΎ Π΄Π° сС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΈ процСси Π²Π΅Π·Π°Π½ΠΎ Π·Π° Ρ„ΠΈΡ‚ΠΎΡ€Π΅ΠΌΠ΅Π΄ΠΈΡ˜Π°Ρ†ΠΈΡ˜Ρƒ ΠΎΠ΄Π²ΠΈΡ˜Π°Ρ˜Ρƒ Π½Π° ΠΈΡΠΏΠΈΡ‚ΠΈΠ²Π°Π½ΠΎΡ˜ Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜ΠΈ. Π£ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Cu нијС дошло Π΄ΠΎ Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΈΡ˜ΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅Π½Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° Ρƒ Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Ρƒ...In this thesis has studied the degree of contamination by heavy metals of the selected location for research, with the analysis of the possible use of existing autochthonous plant species that are naturally developed for phytoremediation process, that does not require significant financial investment, and analysis of the aspects of the use of biomass, originating from remediation of the selected location, for energy purposes. For research is chosen the location where was disposed industrial waste from the chemical industry, "Non-ferrous metallurgy", a joint stock company for the production and processing of zinc "Zorka", Ε abac in restructuring. By systematization of existing knowledge in the field of the heavy metals contaminated sites and possibilities of using biomass for energy purposes of plant origin from the remediation of such sites and by experimental verification of assumptions about the pollution of the selected location, research identified polluting elements in the soil at the research location, primarily metals, lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn) and metalloid arsenic (As), with an assessment of the potential of native wild plants from the research location: poplar (Populus ssp.), ailanthus (Ailanthus glandulosa L.), false acacia (acacia, Robinia pseudoacacia L.), ragweed (Artemisia artemisiifolia L.), and mullein (Verbascum thapsus L.) which could be enforced site remediation, by phytoremediation, phytoextraction or phytostabilisation, with an emphasis on energy utilization of biomass from tested native wild plants, created by phytoremediation on the research location and in this regard related processes, an analysis of the potential risks and benefits obtained from the use of biomass as fuel. By chemical and instrumental methods was found that the location of research, in which the jarosite waste, as residue waste originating from industrial production of zinc and cadmium by hydrometallurgy process, has disposed, mixed and cover with soil, is polluted with toxic heavy metals, lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn), nickel (Ni), chromium (Cr) and metalloid arsenic (As). Soil contamination by heavy metals in the rhizosphere of tested plant species: x Artemisia artemisiifolia L., Ailanthus glandulosa L., false acacia, Populus ssp. and Verbascum thapsus L. was in the following decreasing order: Zn>>Pb>>Cu>Cd>As>Ni>Cr. Mean values of metal concentrations, Pb, Cd, Zn, Cu, Cr, Ni ΠΈ As, in the the rhizosphere of tested plant species during the 7 years of research are: 22,948.64 mg Pb/kg, 865.36 mg Cd/kg, 85,301.73 mg Zn/kg, 3,193.32 mg Cu/kg, 50.72 mg Ni/kg, 41.67 mg Cr/kg and 617.94 mg As/kg. Mean values of Pb, Cd, Zn, Cu, Ni, Cr and As were decreased compared to the concentrations of these elements in the first year, and that, for 36.83% in the case of Pb, 25.48% in the case of Cd, 15.73% in the case of Zn, 23.32 % in the case of Ni, 96.13% in the case of Cr, 36.85% in the case of As, which indicated that natural processes related to phytoremediation, taking place on the examined site. In the case of Cu there has been no significant change in concentration in the soiL..

    Pepeo iz termoelektrana kao sekundarna sirovina

    Get PDF
    The basic characteristic of thermal power plants in the Republic of Serbia is that they use low-grade brown coal (lignite) as a fuel. Depending on the location of coal mines, lignite may have different properties such as heating value, moisture, and mineral content, resulting in different residue upon combustion. Because of several million tonnes of ash and slag generated every year, their granularmetric particle size distribution, and transport and disposal methods, these plants have a negative impact on the environment. According to the waste classification system in the Republic of Serbia, ash and slag from thermal power plants are classified as hazardous waste, but with an option of usability. The proposed revision of waste legislation in Serbia brings a number of simple and modern solutions. A procedure is introduced which allows for end-of-waste criteria to be set, clarifying the point where waste ceases to be waste, and thereby introducing regulatory relief for recycled products or materials that represent low risk for the environment. The new proposal refocuses waste legislation on the environmental impacts of the generation and management of waste, taking into account the life cycle of resources, and develops new waste prevention programmes. Stakeholders, as well as the general public, should have the opportunity to participate in the drawing up of the programmes, and should have access to them.Glavna karakteristika termoelektrana u Srbiji je da upotrebljavaju ugljen – lignit kao gorivo. Zbog velike količine pepela i Ε‘ljake koji nastaju izgaranjem ugljena (i do nekoliko milijuna tona godiΕ‘nje), granulometrijskog sastava i izbora metoda transporta i odlaganja, ΕΎivotna sredina izloΕΎena je negativnom utjecaju. Prema sistemu klasifikacije otpada u Republici Srbiji pepeo i Ε‘ljaka iz termoelektrana klasificirani su kao opasan otpad, indeksnog broja iz Kataloga otpada 100101/190205/190299 s upotrebnom vrijednoΕ‘Δ‡u. Pepeo i Ε‘ljaka generirani na lokaciji termoelektrana β€œNikola Tesla”, Obrenovac i β€œKolubara”, Veliki Crljeni sadrΕΎavaju arsen u koncentracijama od 70 mg kg-1 do 200 mg kg-1 suhe mase. U duhu reciklaΕΎe, a s aspekta smanjenja upotrebe prirodnih resursa, moguΔ‡e je postaviti nove kriterije za specifične vrste otpada, kao Ε‘to je pepeo iz termoelektrana. Potrebno je uvesti postupak za odreΔ‘ivanje kriterija kada otpad prestaje da bude otpad, uvesti zakonske olakΕ‘ice za reciklirane otpade i razviti nove programe za prevenciju nastajanja otpada. U buduΔ‡im zakonskim propisima iz područja upravljanja otpadima potrebno je uzeti u obzir ΕΎivotni ciklus proizvoda i materijala, od njihova nastanka do konačnog odlaganja

    Potential usage of fly and bottom ash from thermal power plant ”Nikola Tesla” landfill, Serbia

    No full text
    In Serbia, the ash from power plants has long been labelled as hazardous waste. With the adoption of the appropriate legislation this ash became secondary raw material with the potential usage. In this paper an analysis of the fly and bottom ash composition, which are disposed of in the power plant β€œNikola Tesla A” landfill, is presented. Thirty samples, divided into three sets, were analyzed for trace elements As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V and Zn. The first and second set of samples were taken at the depth of 0.0-0.6 m, from cassette III, at the place of waste discharge (set I) and in the centre of the cassette (set II).The third set of samples was taken from the same cassette spot but at the different depth. The estimated variations in quality within individual sets, as well as the comparison between sets I and II, were done. The repeatability of results by the depth of cassette (set III) was also analyzed. The mixture consisting of 79.4% limestone, 17% clay, 0.5% sand, 0.55% iron ore, 0.55% from steel mill waste and 2% ash from the thermal power plant "Nikola Tesla A" was adopted as the reputable mixture for cement making. For concrete making, the same cement mixture was used but with 2.1% of the same ash material added. The results showed possibility of further fly and bottom ash use as the cement and concrete material
    corecore