6 research outputs found

    Electrically evoked compound action potentials are different depending on the site of cochlear stimulation.

    Get PDF
    One of the many parameters that can affect cochlear implant (CI) users' performance is the site of presentation of electrical stimulation, from the CI, to the auditory nerve. Evoked compound action potential (ECAP) measurements are commonly used to verify nerve function by stimulating one electrode contact in the cochlea and recording the resulting action potentials on the other contacts of the electrode array. The present study aimed to determine if the ECAP amplitude differs between the apical, middle, and basal region of the cochlea, if double peak potentials were more likely in the apex than the basal region of the cochlea, and if there were differences in the ECAP threshold and recovery function across the cochlea. ECAP measurements were performed in the apical, middle, and basal region of the cochlea at fixed sites of stimulation with varying recording electrodes. One hundred and forty one adult subjects with severe to profound sensorineural hearing loss fitted with a Standard or FLEX(SOFT) electrode were included in this study. ECAP responses were captured using MAESTRO System Software (MED-EL). The ECAP amplitude, threshold, and slope were determined using amplitude growth sequences. The 50% recovery rate was assessed using independent single sequences that have two stimulation pulses (a masker and a probe pulse) separated by a variable inter-pulse interval. For all recordings, ECAP peaks were annotated semi-automatically. ECAP amplitudes were greater upon stimulation of the apical region compared to the basal region of the cochlea. ECAP slopes were steeper in the apical region compared to the basal region of the cochlea and ECAP thresholds were lower in the middle region compared to the basal region of the cochlea. The incidence of double peaks was greater upon stimulation of the apical region compared to the basal region of the cochlea. This data indicates that the site and intensity of cochlear stimulation affect ECAP properties

    Electrically evoked compound action potentials are different depending on the site of cochlear stimulation

    Get PDF
    One of the many parameters that can affect cochlear implant (CI) users' performance is the site of presentation of electrical stimulation, from the CI, to the auditory nerve. Evoked compound action potential (ECAP) measurements are commonly used to verify nerve function by stimulating one electrode contact in the cochlea and recording the resulting action potentials on the other contacts of the electrode array. The present study aimed to determine if the ECAP amplitude differs between the apical, middle, and basal region of the cochlea, if double peak potentials were more likely in the apex than the basal region of the cochlea, and if there were differences in the ECAP threshold and recovery function across the cochlea. ECAP measurements were performed in the apical, middle, and basal region of the cochlea at fixed sites of stimulation with varying recording electrodes. One hundred and forty one adult subjects with severe to profound sensorineural hearing loss fitted with a Standard or FLEX(SOFT) electrode were included in this study. ECAP responses were captured using MAESTRO System Software (MED-EL). The ECAP amplitude, threshold, and slope were determined using amplitude growth sequences. The 50% recovery rate was assessed using independent single sequences that have two stimulation pulses (a masker and a probe pulse) separated by a variable inter-pulse interval. For all recordings, ECAP peaks were annotated semi-automatically. ECAP amplitudes were greater upon stimulation of the apical region compared to the basal region of the cochlea. ECAP slopes were steeper in the apical region compared to the basal region of the cochlea and ECAP thresholds were lower in the middle region compared to the basal region of the cochlea. The incidence of double peaks was greater upon stimulation of the apical region compared to the basal region of the cochlea. This data indicates that the site and intensity of cochlear stimulation affect ECAP properties

    The reliability of hearing implants: report on the type and incidence of cochlear implant failures.

    No full text
    Objectives: This study presents the data collected through a database on the type and incidence of cochlear implant device failures and major complications and quantifies the risk of failures across time based on the Association for the Advancement of Medical Instrumentation (AAMI) CI86:2017 standard. Methods: Information on reliability of MED-EL cochlear implants was collected from the MED-EL complaint database between 2003 and2013. Explants were categorized and device reliability was calculated according to the AAMI CI86:2017 standard principles. Results: Data were collected for 11662 devices (5462 children, 6200 adults). The mean duration of follow up was 46.16 months. The total failure rate for all devices and all subjects was 2.41%. Medical related explants (MRE) were significantly worse for children than for adults with the ceramic implants, C40+ (p = 0.008) and PULSAR (p = 0.020). Device failure explants (DFE) were significantly worse for children than for adults with all four devices in the study, the C40+ (p < 0.001), PULSAR (p < 0.001), SONATA (p < 0.001), and CONCERTO (p = 0.023). The mean annual failure rate for all subjects and devices was 0.63% (1.03% for children, 0.28% for adults). The mean annual failure rate was 0.90% for the C40+; 0.57% for the PULSAR; 0.46% for the SONATA; and 0.39% for the CONCERTO. Conclusions: Compared to adults, children had significantly worse MRE and DFE due to a higher risk of head trauma and more vulnerable skull anatomy. Further, the authors conclude that the AAMI standard will ensure a more comprehensive and transparent evaluation of cochlear implant reliability in the future

    Hearing preservation cochlear implantation in children:The HEARRING Group consensus and practice guide

    No full text
    International audienceOBJECTIVES: To provide multidisciplinary cochlear implant teams with a current consensus statement to support hearing preservation cochlear implantation (HPCI) in children, including those children with symptomatic partial deafness (PD) where the intention is to use electric-acoustic stimulation (EAS). The main objectives are to provide guidelines on who is a candidate, how to assess these children and when to implant if Med-El Flex electrode arrays are chosen for implantation. METHODS: The HEARRING group reviewed the current evidence and practice regarding the management of children to be considered for HPCI surgery emphasizing the assessment needed prior to implantation in order to demonstrate the benefits in these children over time. The consensus statement addresses following three key questions: (1) Should these children be treated? (2) How to identify these children? (3) How to manage these children? SUMMARY: The HEARRING group concludes that irrespective of the degree of residual hearing present, the concepts of hearing and structure preservation should be applied in every child undergoing cochlear implantation and that HPCI is a safe and reliable treatment option. Early detection and multidisciplinary assessment are key to the identification of children with symptomatic PD, these children should undergo HPCI as early as possible

    Quality standards for bone conduction implants.

    No full text
    CONCLUSION Bone conduction implants are useful in patients with conductive and mixed hearing loss for whom conventional surgery or hearing aids are no longer an option. They may also be used in patients affected by single-sided deafness. OBJECTIVES To establish a consensus on the quality standards required for centers willing to create a bone conduction implant program. METHOD To ensure a consistently high level of service and to provide patients with the best possible solution the members of the HEARRING network have established a set of quality standards for bone conduction implants. These standards constitute a realistic minimum attainable by all implant clinics and should be employed alongside current best practice guidelines. RESULTS Fifteen items are thoroughly analyzed. They include team structure, accommodation and clinical facilities, selection criteria, evaluation process, complete preoperative and surgical information, postoperative fitting and assessment, follow-up, device failure, clinical management, transfer of care and patient complaints
    corecore