58 research outputs found

    Detection and modeling of hole capture by single point defects under variable electric fields

    Full text link
    Understanding carrier trapping in solids has proven key to semiconductor technologies but observations thus far have relied on ensembles of point defects, where the impact of neighboring traps or carrier screening is often important. Here, we investigate the capture of photo-generated holes by an individual negatively-charged nitrogen-vacancy (NV) center in diamond at room temperature. Using an externally gated potential to minimize space-charge effects, we find the capture probability under electric fields of variable sign and amplitude shows an asymmetric-bell-shaped response with maximum at zero voltage. To interpret these observations, we run semi-classical Monte Carlo simulations modeling carrier trapping through a cascade process of phonon emission, and obtain electric-field-dependent capture probabilities in good agreement with experiment. Since the mechanisms at play are insensitive to the trap characteristics, the capture cross sections we observe - largely exceeding those derived from ensemble measurements - should also be present in materials platforms other than diamond

    Detection of High Energy Ionizing Radiation using Deeply Depleted Graphene-Oxide-Semiconductor Junctions

    Full text link
    Graphene's linear bandstructure and two-dimensional density of states provide an implicit advantage for sensing charge. Here, these advantages are leveraged in a deeply depleted graphene-oxide-semiconductor (D2GOS) junction detector architecture to sense carriers created by ionizing radiation. Specifically, the room temperature response of the silicon-based D2GOS junction is analyzed during irradiation with 20 MeV Si4+ ions. Detection was demonstrated for doses ranging from 12-1200 ions with device functionality maintained with no substantive degradation. To understand the device response, D2GOS pixels were characterized post-irradiation via a combination of electrical characterization, Raman spectroscopy, and photocurrent mapping. This combined characterization methodology underscores the lack of discernible damage caused by irradiation to the graphene while highlighting the nature of interactions between the incident ions and the silicon absorber.Comment: 15 pages, 4 figure

    Determination of radiation hardness of silicon diodes

    Get PDF
    In this paper, we describe an experiment aimed to measure the physical observables, which can be used for the assessment of the radiation hardness of commercially available silicon photo diodes commonly used as nuclear detectors in particle accelerator laboratories. The experiment adopted the methodology developed during the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP No. F11016) “Utilization of Ion Accelerators for Studying and Modelling Ion Induced Radiation Defects in Semiconductors and Insulators”. This methodology is based on the selective irradiation of micrometer-sized regions with different fluences of MeV ions using an ion microbeam and on the measurement of the charge collection efficiency (CCE) degradation by Ion Beam Induced Charge (IBIC) microscopy performed in full depletion condition, using different probing ions. The IBIC results are analyzed through a theoretical approach based on the Shockley-Read-Hall model for the free carrier recombination in the presence of ion-induced deep traps. This interpretative model allows the evaluation of the material radiation hardness in terms of recombination parameters for both electrons and holes. The device under study in this experiment was a commercial p-i-n photodiode, which was initially characterized by i) standard electronic characterization techniques to determine its doping and ii) the Angle-Resolved IBIC to evaluate its effective entrance window. Nine regions of (100 × 100) µm2 were irradiated with 11.25 MeV He ions up to a maximum fluence of 3·1012 ions/cm2. The CCE degradation was measured by the IBIC technique using 11.25 MeV He and 1.4 MeV He as probing ions. The model presented here proved to be effective for fitting the experimental data. The fitting parameters correspond to the recombination coefficients, which are the key parameters for the characterization of the effects of radiation damage in semiconductors.</p

    Heavy Ion Microbeam and Broadbeam Transients in SiGe HBTs

    Get PDF
    SiGe HBT heavy ion current transients are measured using microbeam and both high- and low-energy broadbeam sources. These new data provide detailed insight into the effects of ion range, LET, and strike location

    Mapping of ion beam induced current changes in FinFETs

    Full text link
    We report on progress in ion placement into silicon devices with scanning probe alignment. The device is imaged with a scanning force microscope (SFM) and an aligned argon beam (20 keV, 36 keV) is scanned over the transistor surface. Holes in the lever of the SFM tip collimate the argon beam to sizes of 1.6 um and 100 nm in diameter. Ion impacts upset the channel current due to formation of positive charges in the oxide areas. The induced changes in the source-drain current are recorded in dependence of the ion beam position in respect to the FinFET. Maps of local areas responding to the ion beam are obtained.Comment: IBMM 2008 conference proceedin

    High-Speed Single-Event Current Transient Measurements in SiGe HBTs

    Get PDF
    Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT: 1) Position correlation. 2) Unique response for different bias schemes. 3) Similarities to TPA pulsed-laser data. Heavy ion broad-beam transients provide more realistic device response: 1) Feedback using microbeam data 2) Overcome existing issues of LET and ion range with microbeam Both micro- and broad-beam data sets yield valuable input for TCAD simulations. Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates

    Heavy Ion Current Transients in SiGe HBTs

    Get PDF
    Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT: a) Position correlation[ b) Unique response for different bias schemes; c) Similarities to TPA pulsed-laser data. Heavy ion broad-beam transients provide more realistic device response: a) Feedback using microbeam data; b) Overcome issues of LET and ion range with microbeam. Both micro- and broad-beam data sets yield valuable input for TCAD simulations. Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates

    Heavy Ion Microbeam- and Broadbeam-Induced Current Transients in SiGe HBTs

    Get PDF
    IBM 5AM SiGe HBT is device-under-test. High-speed measurement setup. Low-impedance current transient measurements. SNL, JYFL, GANIL. Microbeam to broadbeam position inference. Improvement to state-of-the-art. Microbeam (SNL) transients reveal position dependent heavy ion response, Unique response for different device regions Unique response for different bias schemes. Similarities to TPA pulsed-laser data. Broadbeam transients (JYFL and GANIL) provide realistic heavy ion response. Feedback using microbeam data. Overcome issues of LET and ion range with microbeam. **Angled Ar-40 data in full paper. Data sets yield first-order results, suitable for TCAD calibration feedback
    corecore