4,972 research outputs found

    Estimation from quantized Gaussian measurements: when and how to use dither

    Full text link
    Subtractive dither is a powerful method for removing the signal dependence of quantization noise for coarsely quantized signals. However, estimation from dithered measurements often naively applies the sample mean or midrange, even when the total noise is not well described with a Gaussian or uniform distribution. We show that the generalized Gaussian distribution approximately describes subtractively dithered, quantized samples of a Gaussian signal. Furthermore, a generalized Gaussian fit leads to simple estimators based on order statistics that match the performance of more complicated maximum likelihood estimators requiring iterative solvers. The order statistics-based estimators outperform both the sample mean and midrange for nontrivial sums of Gaussian and uniform noise. Additional analysis of the generalized Gaussian approximation yields rules of thumb for determining when and how to apply dither to quantized measurements. Specifically, we find subtractive dither to be beneficial when the ratio between the Gaussian standard deviation and quantization interval length is roughly less than one-third. When that ratio is also greater than 0.822/K^0.930 for the number of measurements K > 20, estimators we present are more efficient than the midrange.https://arxiv.org/abs/1811.06856Accepted manuscrip

    Dead Time Compensation for High-Flux Ranging

    Full text link
    Dead time effects have been considered a major limitation for fast data acquisition in various time-correlated single photon counting applications, since a commonly adopted approach for dead time mitigation is to operate in the low-flux regime where dead time effects can be ignored. Through the application of lidar ranging, this work explores the empirical distribution of detection times in the presence of dead time and demonstrates that an accurate statistical model can result in reduced ranging error with shorter data acquisition time when operating in the high-flux regime. Specifically, we show that the empirical distribution of detection times converges to the stationary distribution of a Markov chain. Depth estimation can then be performed by passing the empirical distribution through a filter matched to the stationary distribution. Moreover, based on the Markov chain model, we formulate the recovery of arrival distribution from detection distribution as a nonlinear inverse problem and solve it via provably convergent mathematical optimization. By comparing per-detection Fisher information for depth estimation from high- and low-flux detection time distributions, we provide an analytical basis for possible improvement of ranging performance resulting from the presence of dead time. Finally, we demonstrate the effectiveness of our formulation and algorithm via simulations of lidar ranging.Comment: Revision with added estimation results, references, and figures, and modified appendice

    Baryon Inhomogeneity Generation in the Quark-Gluon Plasma Phase

    Full text link
    We discuss the possibility of generation of baryon inhomogeneities in a quark-gluon plasma phase due to moving Z(3) interfaces. By modeling the dependence of effective mass of the quarks on the Polyakov loop order parameter, we study the reflection of quarks from collapsing Z(3) interfaces and estimate resulting baryon inhomogeneities in the context of the early universe. We argue that in the context of certain low energy scale inflationary models, it is possible that large Z(3) walls arise at the end of the reheating stage. Collapse of such walls could lead to baryon inhomogeneities which may be separated by large distances near the QCD scale. Importantly, the generation of these inhomogeneities is insensitive to the order, or even the existence, of the quark-hadron phase transition. We also briefly discuss the possibility of formation of quark nuggets in this model, as well as baryon inhomogeneity generation in relativistic heavy-ion collisions.Comment: 11 pages, 2 figures, revtex4, more detailed discussion added about formation and evolution of Z(3)domain walls in the univers

    Minimal Universal Two-qubit Quantum Circuits

    Full text link
    We give quantum circuits that simulate an arbitrary two-qubit unitary operator up to global phase. For several quantum gate libraries we prove that gate counts are optimal in worst and average cases. Our lower and upper bounds compare favorably to previously published results. Temporary storage is not used because it tends to be expensive in physical implementations. For each gate library, best gate counts can be achieved by a single universal circuit. To compute gate parameters in universal circuits, we only use closed-form algebraic expressions, and in particular do not rely on matrix exponentials. Our algorithm has been coded in C++.Comment: 8 pages, 2 tables and 4 figures. v3 adds a discussion of asymetry between Rx, Ry and Rz gates and describes a subtle circuit design problem arising when Ry gates are not available. v2 sharpens one of the loose bounds in v1. Proof techniques in v2 are noticeably revamped: they now rely less on circuit identities and more on directly-computed invariants of two-qubit operators. This makes proofs more constructive and easier to interpret as algorithm

    Classical solutions for Yang-Mills-Chern-Simons field coupled to an external source

    Full text link
    We find wide class of exact solutions of Yang-Mills-Chern-Simons theory coupled to an external source, in terms of doubly periodic Jacobi elliptic functions. The obtained solutions include localized solitons, trigonometric solutions, pure cnoidal waves, and singular solutions in certain parameter range. Furthermore, it is observed that these solutions exist over a nonzero background.Comment: 5 page

    Noether Currents of Charged Spherical Black Holes

    Full text link
    We calculate the Noether currents and charges for Einstein-Maxwell theory using a version of the Wald approach. In spherical symmetry, the choice of time can be taken as the Kodama vector. For the static case, the resulting combined Einstein-Maxwell charge is just the mass of the black hole. Using either a classically defined entropy or the Iyer-Wald selection rules, the entropy is found to be just a quarter of the area of the trapping horizon. We propose identifying the combined Noether charge as an energy associated with the Kodama time. For the extremal black hole case, we discuss the problem of Wald's rescaling of the surface gravity to define the entropy.Comment: 4 page

    Band inversion driven by electronic correlations at the (111) LaAlO3_3/SrTiO3_3 interface

    Get PDF
    Quantum confinement at complex oxide interfaces establishes an intricate hierarchy of the strongly correlated dd-orbitals which is widely recognized as a source of emergent physics. The most prominent example is the (001) LaAlO3_3/SrTiO3_3(LAO/STO) interface, which features a dome-shaped phase diagram of superconducting critical temperature and spin-orbit coupling (SOC) as a function of electrostatic doping, arising from a selective occupancy of t2gt_{2g} orbitals of different character. Here we study (111)-oriented LAO/STO interfaces - where the three t2gt_{2g} orbitals contribute equally to the sub-band states caused by confinement - and investigate the impact of this unique feature on electronic transport. We show that transport occurs through two sets of electron-like sub-bands, and the carrier density of one of the sets shows a non-monotonic dependence on the sample conductance. Using tight-binding modeling, we demonstrate that this behavior stems from a band inversion driven by on-site Coulomb interactions. The balanced contribution of all t2gt_{2g} orbitals to electronic transport is shown to result in strong SOC with reduced electrostatic modulation.Comment: 5 pages, 4 figures, (+ supplemental material

    Universality of the single-particle spectra of cuprate superconductors

    Full text link
    All the available data for the dispersion and linewidth of the single-particle spectra above the superconducting gap and the pseudogap in metallic cuprates for any doping has universal features. The linewidth is linear in energy below a scale ωc\omega_c and constant above. The cusp in the linewidth at ωc\omega_c mandates, due to causality, a "waterfall", i.e., a vertical feature in the dispersion. These features are predicted by a recent microscopic theory. We find that all data can be quantitatively fitted by the theory with a coupling constant λ0\lambda_0 and an upper cutoff at ωc\omega_c which vary by less than 50% among the different cuprates and for varying dopings. The microscopic theory also gives these values to within factors of O(2).Comment: 4 pages, 4 figures; accepted by Phys. Rev. Let

    Probing the time variability of five Fe low broad absorption line quasars

    Get PDF
    We study the time variability of five Fe Low ionization Broad Absorption Line (FeLoBAL) QSOs using repeated spectroscopic observations with the 2m telescope at IUCAA Girawali observatory (IGO) spanning an interval of upto 10 years. We report a dramatic variation in Al III and Fe III fine-structure lines in the spectra of SDSS J221511.93-004549.9 (z_em ~ 1.478). However, there is no such strong variability shown by the C IV absorption. This source is known to be unusual with (i) the continuum emission dominated by Fe emission lines, (ii) Fe III absorption being stronger than Fe II and (iii) the apparent ratio of Fe III UV 48 to Fe III UV 34 absorption suggesting an inverted population ratio. This is the first reported detection of time variability in the Fe III fine-structure lines in QSO spectra. There is a strong reduction in the absorption strength of these lines between year 2000 and 2008. Using the template fitting techniques, we show that the apparent inversion of strength of UV lines could be related to the complex spectral energy distribution of this QSO. The observed variability can be related to change in the ionization state of the gas or due to transverse motion of this absorbing gas. The shortest variability timescale of Al III line gives a lower limit on the electron density of the absorbing gas as n_e >= 1.1 x 10^4 cm^-3. The remaining 4 FeLoBALs do not show any changes beyond the measurement uncertainties either in optical depth or in the velocity structure. We present the long-term photometric light curve for all of our sources. Among them only SDSS J221511.93-004549.9 shows significant (>= 0.2 mag) variability.Comment: 15 pages, 9 figures, 3 tables, Accepted for publication in MNRA

    Abnormal wave reflections and left ventricular hypertrophy late after coarctation of the aorta repair

    Get PDF
    Patients with repaired coarctation of the aorta are thought to have increased afterload due to abnormalities in vessel structure and function. We have developed a novel cardiovascular magnetic resonance protocol that allows assessment of central hemodynamics, including central aortic systolic blood pressure, resistance, total arterial compliance, pulse wave velocity, and wave reflections. The main study aims were to (1) characterize group differences in central aortic systolic blood pressure and peripheral systolic blood pressure, (2) comprehensively evaluate afterload (including wave reflections) in the 2 groups, and (3) identify possible biomarkers among covariates associated with elevated left ventricular mass (LVM). Fifty adult patients with repaired coarctation and 25 age- and sex-matched controls were recruited. Ascending aorta area and flow waveforms were obtained using a high temporal-resolution spiral phase-contrast cardiovascular magnetic resonance flow sequence. These data were used to derive central hemodynamics and to perform wave intensity analysis noninvasively. Covariates associated with LVM were assessed using multivariable linear regression analysis. There were no significant group differences (P≥0.1) in brachial systolic, mean, or diastolic BP. However central aortic systolic blood pressure was significantly higher in patients compared with controls (113 versus 107 mm Hg, P=0.002). Patients had reduced total arterial compliance, increased pulse wave velocity, and larger backward compression waves compared with controls. LVM index was significantly higher in patients than controls (72 versus 59 g/m(2), P<0.0005). The magnitude of the backward compression waves was independently associated with variation in LVM (P=0.01). Using a novel, noninvasive hemodynamic assessment, we have shown abnormal conduit vessel function after coarctation of the aorta repair, including abnormal wave reflections that are associated with elevated LVM
    corecore