11 research outputs found
A generic binding pocket for small molecule IKs activators at the extracellular inter-subunit interface of KCNQ1 and KCNE1 channel complexes
The cardiac IKs ion channel comprises KCNQ1, calmodulin, and KCNE1 in a dodecameric complex which provides a repolarizing current reserve at higher heart rates and protects from arrhythmia syndromes that cause fainting and sudden death. Pharmacological activators of IKs are therefore of interest both scientifically and therapeutically for treatment of IKs loss-of-function disorders. One group of chemical activators are only active in the presence of the accessory KCNE1 subunit and here we investigate this phenomenon using molecular modeling techniques and mutagenesis scanning in mammalian cells. A generalized activator binding pocket is formed extracellularly by KCNE1, the domain-swapped S1 helices of one KCNQ1 subunit and the pore/turret region made up of two other KCNQ1 subunits. A few residues, including K41, A44 and Y46 in KCNE1, W323 in the KCNQ1 pore, and Y148 in the KCNQ1 S1 domain, appear critical for the binding of structurally diverse molecules, but in addition, molecular modeling studies suggest that induced fit by structurally different molecules underlies the generalized nature of the binding pocket. Activation of IKs is enhanced by stabilization of the KCNQ1-S1/KCNE1/pore complex, which ultimately slows deactivation of the current, and promotes outward current summation at higher pulse rates. Our results provide a mechanistic explanation of enhanced IKs currents by these activator compounds and provide a map for future design of more potent therapeutically useful molecules
Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity
Potassium (K+)-channel gating is choreographed by a complex interplay between external stimuli, K+ concentration and lipidic environment. We combined solid-state NMR and electrophysiological experiments on a chimeric KcsA–Kv1.3 channel to delineate K+, pH and blocker effects on channel structure and function in a membrane setting. Our data show that pH-induced activation is correlated with protonation of glutamate residues at or near the activation gate. Moreover, K+ and channel blockers distinctly affect the open probability of both the inactivation gate comprising the selectivity filter of the channel and the activation gate. The results indicate that the two gates are coupled and that effects of the permeant K+ ion on the inactivation gate modulate activation-gate opening. Our data suggest a mechanism for controlling coordinated and sequential opening and closing of activation and inactivation gates in the K+-channel pore
Inhibition of Kv2.1 Potassium Channels by MiDCA1, A Pre-Synaptically Active PLA2-Type Toxin from Micrurus dumerilii carinicauda Coral Snake Venom
MiDCA1, a phospholipase A2 (PLA2) neurotoxin isolated from Micrurus dumerilii carinicauda coral snake venom, inhibited a major component of voltage-activated potassium (Kv) currents (41 ± 3% inhibition with 1 μM toxin) in mouse cultured dorsal root ganglion (DRG) neurons. In addition, the selective Kv2.1 channel blocker guangxitoxin (GxTx-1E) and MiDCA1 competitively inhibited the outward potassium current in DRG neurons. MiDCA1 (1 µM) reversibly inhibited the Kv2.1 current by 55 ± 8.9% in a Xenopus oocyte heterologous system. The toxin showed selectivity for Kv2.1 channels over all the other Kv channels tested in this study. We propose that Kv2.1 channel blockade by MiDCA1 underlies the toxin’s action on acetylcholine release at mammalian neuromuscular junctions
Allosteric Features of KCNQ1 Gating Revealed by Alanine Scanning Mutagenesis
Controlled opening and closing of an ion-selective pathway in response to changes of membrane potential is a fundamental feature of voltage-gated ion channels. In recent decades, various details of this process have been revealed with unprecedented precision based on studies of prototypic potassium channels. Though current scientific efforts are focused more on a thorough description of voltage-sensor movement, much less is known about the similarities and differences of the gating mechanisms among potassium channels. Here, we describe the peculiarities of the KCNQ1 gating process in parallel comparison to Shaker. We applied alanine scanning mutagenesis to the S4-S5 linker and pore region and followed the regularities of gating perturbations in KCNQ1. We found a fractional constitutive conductance for wild-type KCNQ1. This component increased significantly in mutants with considerably leftward-shifted steady-state activation curves. In contrast to Shaker, no correlation between V1/2 and Z parameters was observed for the voltage-dependent fraction of KCNQ1. Our experimental findings are explained by a simple allosteric gating scheme with voltage-driven and voltage-independent transitions. Allosteric features are discussed in the context of extreme gating adaptability of KCNQ1 upon interaction with KCNE β-subunits
KCNQ4 K(+) channels tune mechanoreceptors for normal touch sensation in mouse and man.
Item does not contain fulltextMutations inactivating the potassium channel KCNQ4 (K(v)7.4) lead to deafness in humans and mice. In addition to its expression in mechanosensitive hair cells of the inner ear, KCNQ4 is found in the auditory pathway and in trigeminal nuclei that convey somatosensory information. We have now detected KCNQ4 in the peripheral nerve endings of cutaneous rapidly adapting hair follicle and Meissner corpuscle mechanoreceptors from mice and humans. Electrophysiological recordings from single afferents from Kcnq4(-/-) mice and mice carrying a KCNQ4 mutation found in DFNA2-type monogenic dominant human hearing loss showed elevated mechanosensitivity and altered frequency response of rapidly adapting, but not of slowly adapting nor of D-hair, mechanoreceptor neurons. Human subjects from independent DFNA2 pedigrees outperformed age-matched control subjects when tested for vibrotactile acuity at low frequencies. This work describes a gene mutation that modulates touch sensitivity in mice and humans and establishes KCNQ4 as a specific molecular marker for rapidly adapting Meissner and a subset of hair follicle afferents