318 research outputs found

    Molecular and pharmacological characterization of native cortical γ- aminobutyric acids receptors containing both α1 and α3 subunits

    Get PDF
    We have investigated the existence, molecular composition, and benzodiazepine binding properties of native cortical α1-α3 γ- aminobutyric acid(A) (GABA(A)) receptors using subunit-specific antibodies. The co-existence of α1 and α3 subunits in native GABA(A) receptors was demonstrated by immunoblot analysis of the anti-α1- or anti-α3- immunopurified receptors and by immunoprecipitation experiments of the [3H]zolpidem binding activity. Furthermore, immunodepletion experiments indicated that the α1-α3 GABA(A) receptors represented 54.7 ± 5.0 and 23.6 ± 3.3% of the α3 and α1 populations, respectively. Therefore, α1 and α3 subunits are associated in the same native GABA(A) receptor complex, but, on the other hand, these α1-α3 GABA(A) receptors from the cortex constitute a large proportion of the total α3 population and a relatively minor component of the α1 population. The pharmacological analysis of the α1- or α3-immunopurified receptors demonstrated the presence of two different benzodiazepine binding sites in each receptor population with high (type I binding sites) and low (type II binding sites) affinities for zolpidem and Cl 218,872. These results indicate the existence of native GABA(A) receptors possessing both α1 and α3 subunits, with α1 and α3 subunits expressing their characteristic benzodiazepine pharmacology. The molecular characterization of the anti-α1-anti-α3 double-Immunopurified receptors demonstrated the presence of stoichiometric amounts of α1 and α3 subunits, associated with α(2/3), and γ2 subunits. The pharmacological analysis of α1-α3 GABA(A) receptors demonstrated that, despite the fact that each α subunit retained its benzodiazepine binding properties, the relative proportion between type I and II binding sites or between 51- and 59-61-kDa [3H]Ro15-4513-photolabeled peptides was 70:30. Therefore, the α1 subunit is pharmacologically predominant over the α3 subunit. These results indicate the existence of active and nonactive α subunits in the native α1-α3 GABA(A) receptors from rat corte

    Chemical Vapor Deposition of Tin Sulfide from Diorganotin(IV) Dixanthates

    Get PDF
    We report the synthesis and single-crystal X-ray characterization of diphenyltin bis(2-methoxyethylxanthate) and diphenyltin bis(iso-butylxanthate). These xanthates have been used as a single-source precursor to deposit tin chalcogenide thin films by aerosol-assisted chemical vapor deposition. Grazing incidence X-ray diffraction and scanning transmission electron microscope imaging coupled with elemental mapping show that films deposited from diphenyltin bis(iso-butylxanthate) contain orthorhombic SnS, while films deposited from diphenyltin bis(2-methoxyethylxanthate) between 400 and 575 °C form a SnS/SnO2 nanocomposite. In synthesizing the thin films, we have also demonstrated an ability to control the band gap of the materials based on composition and deposition temperature

    Neocortical tissue recovery in severe congenital obstructive hydrocephalus after intraventricular administration of bone marrow-derived mesenchymal stem cells

    Get PDF
    BACKGROUND: In obstructive congenital hydrocephalus, cerebrospinal fluid accumulation is associated with high intracranial pressure and the presence of periventricular edema, ischemia/hypoxia, damage of the white matter, and glial reactions in the neocortex. The viability and short time effects of a therapy based on bone marrow-derived mesenchymal stem cells (BM-MSC) have been evaluated in such pathological conditions in the hyh mouse model. METHODS: BM-MSC obtained from mice expressing fluorescent mRFP1 protein were injected into the lateral ventricle of hydrocephalic hyh mice at the moment they present a very severe form of the disease. The effect of transplantation in the neocortex was compared with hydrocephalic hyh mice injected with the vehicle and non-hydrocephalic littermates. Neural cell populations and the possibility of transdifferentiation were analyzed. The possibility of a tissue recovering was investigated using 1H High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (1H HR-MAS NMR) spectroscopy, thus allowing the detection of metabolites/osmolytes related with hydrocephalus severity and outcome in the neocortex. An in vitro assay to simulate the periventricular astrocyte reaction conditions was performed using BM-MSC under high TNFα level condition. The secretome in the culture medium was analyzed in this assay. RESULTS: Four days after transplantation, BM-MSC were found undifferentiated and scattered into the astrocyte reaction present in the damaged neocortex white matter. Tissue rejection to the integrated BM-MSC was not detected 4 days after transplantation. Hyh mice transplanted with BM-MSC showed a reduction in the apoptosis in the periventricular neocortex walls, suggesting a neuroprotector effect of the BM-MSC in these conditions. A decrease in the levels of metabolites/osmolytes in the neocortex, such as taurine and neuroexcytotoxic glutamate, also indicated a tissue recovering. Under high TNFα level condition in vitro, BM-MSC showed an upregulation of cytokine and protein secretion that may explain homing, immunomodulation, and vascular permeability, and therefore the tissue recovering. CONCLUSIONS: BM-MSC treatment in severe congenital hydrocephalus is viable and leads to the recovery of the severe neurodegenerative conditions in the neocortex. NMR spectroscopy allows to follow-up the effects of stem cell therapy in hydrocephalus.España Instituto Carlos III , PI15/00619 (to AJJ), PI19/00778 (to AJJ and PPG), PI15/00796, and PI18/01557España Ministerio de Educación, Cultura y Deporte FPU13/02906España, Ministerio de Economía y Competitividad RYC-2014-16980España, FEDER Andalucía y Universidad de Málaga UMA18-FEDERJA-27

    Disorder and Sorption Preferences in a Highly Stable Fluoride- Containing Rare-Earth fcu-Type Metal−Organic Framework

    Get PDF
    Rare-earth (RE) metal−organic frameworks (MOFs) synthesized in the presence of fluorine-donating modulators or linkers are an important new subset of functional MOFs. However, the exact nature of the REaXb core of the molecular building block (MBB) of the MOF, where X is a μ2 or 3-bridging group, remains unclear. Investigation of one of the archetypal members of this family with the stable fcu framework topology, Y-fum-fcu-MOF (1), using a combination of experimental techniques, including high-field (20 T) solid-state nuclear magnetic resonance spectroscopy, has determined two sources of framework disorder involving the μ3-X face-capping group of the MBB and the fumarate (fum) linker. The core of the MBB of 1 is shown to contain a mixture of μ3-F− and (OH)− groups with preferential occupation at the crystallographically different facecapping sites that result in different internally lined framework tetrahedral cages. The fum linker is also found to display a disordered arrangement involving bridging− or chelating−bridging bis-bidentate modes over the fum linker positions without influencing the MBB orientation. This linker disorder will, upon activation, result in the creation of Y3+ ions with potentially one or two additional uncoordinated sites possessing differing degrees of Lewis acidity. Crystallographically determined host−guest relationships for simple sorbates demonstrate the favored sorption sites for N2, CO2, and CS2 molecules that reflect the chemical nature of both the framework and the sorbate species with the structural partitioning of the μ3-groups apparent in determining the favored sorption site of CS2. The two types of disorder found within 1 demonstrate the complexity of fluoride-containing RE-MOFs and highlight the possibility to tune this and other frameworks to contain different proportions and segregations of μ3-face-capping groups and degrees of linker disorder for specifically tailored applications.EPSRC and the University of Manchester for the award of a DTG PhD studentship (EPSRC EP/R513131/1) and funding the dual source Rigaku FR-X diffractometer (EPSRC EP/P001386/1)Henry Royce Institute, funded through EPSRC grants EP/R00661X/1, EP/P025021/1, and EP/P025498/1EPSRC and BBSRC (EP/T015063/1)University of WarwickBirmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF

    Amyloid-β reduces the expression of neuronal FAIM-L, thereby shifting the inflammatory response mediated by TNFα from neuronal protection to death

    Get PDF
    The brains of patients with Alzheimer’s disease (AD) present elevated levels of tumor necrosis factor-α (TNFα), a cytokine that has a dual function in neuronal cells. On one hand, TNFα can activate neuronal apoptosis, and on the other hand, it can protect these cells against amyloid-β (Aβ) toxicity. Given the dual behavior of this molecule, there is some controversy regarding its contribution to the pathogenesis of AD. Here we examined the relevance of the long form of Fas apoptotic inhibitory molecule (FAIM) protein, FAIM-L, in regulating the dual function of TNFα. We detected that FAIM-L was reduced in the hippocampi of patients with AD. We also observed that the entorhinal and hippocampal cortex of a mouse model of AD (PS1M146LxAPP751sl) showed a reduction in this protein before the onset of neurodegeneration. Notably, cultured neurons treated with the cortical soluble fractions of these animals showed a decrease in endogenous FAIM-L, an effect that is mimicked by the treatment with Aβ-derived diffusible ligands (ADDLs). The reduction in the expression of FAIM-L is associated with the progression of the neurodegeneration by changing the inflammatory response mediated by TNFα in neurons. In this sense, we also demonstrate that the protection afforded by TNFα against Aβ toxicity ceases when endogenous FAIM-L is reduced by short hairpin RNA (shRNA) or by treatment with ADDLs. All together, these results support the notion that levels of FAIM-L contribute to determine the protective or deleterious effect of TNFα in neuronal cells

    Neuroinflammation in Alzheimer's Disease

    Get PDF
    Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment but strongly interacts with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on micro- and astroglia and trigger an innate immune response, characterized by the release of inflammatory mediators, which contribute to disease progression and severity. Genome wide analysis suggests that several genes, which increase the risk for sporadic Alzheimer's disease en-code for factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity are likely to interfere with the immunological processes of the brain and further promote disease progression. This re-view provides an overview on the current knowledge and focuses on the most recent and exciting findings. Modulation of risk factors and intervention with the described immune mechanisms are likely to lead to future preventive or therapeutic strategies for Alzheimer's disease

    A Luminescent MOF Based on Pyrimidine-4,6-dicarboxylate Ligand and Lead(II) with Unprecedented Topology

    Get PDF
    In the present work, we report on a 3D MOF of {[Pb5(μ3-OH)(μ3-NO3)3(μ6-pmdc)3]·H2O}n formula (pmdc = pyrimidine-4,6-dicarboxylate) synthesized by an oven-heated, solvent-free procedure. The large connectivity afforded by the three ligands in their coordination to lead(II) ions grows cubic building units characterized by a central Pb atom with an unusual coordination index of 12 and 6 pmdc ligands occupying the faces. These cubic units are linked to one another giving rise to a quite condensed structure that represents an unprecedented topology showing the (4·62)6(43)2(45·610)3(45·68·82)6(46·69)6(612·83) point symbol. The crystalline material has been characterized by routine physico-chemical techniques to confirm its purity, and its thermal behaviour has been also studied by thermogravimetric and thermodiffractometric analyses. The solid presents a greenish blue photoluminescent emission based on pmdc ligands, as revealed by time-dependent density-functional theory (TDDFT) calculations, which is substantially more intense than in the free H2pmdc ligand according to its improved quantum yield. The emissive capacity of the material is further analysed according to decreasing temperature of the polycrystalline sample, finding that sizeable, long-lasting phosphorescence is present.This research was funded by Gobierno Vasco/Eusko Jaurlaritza (IT1755-22, IT1722-22 and IT1500-22) and Junta de Andalucía (ProyExcel_00386 and FQM-394). This publication is also part of the I+D+i projects of PGC2018-102052-A-C22 and PGC2018-102052-B-C21 codes, funded by MCIN/ AEI/10.13039/501100011033/ and “FEDER Una manera de hacer Europa”

    A metal-organic framework based on Co(II) and 3-aminoisonicotinate showing specific and reversible colourimetric response to solvent exchange with variable magnet behaviour

    Get PDF
    [EN] A versatile metal-organic system consisting of Co-based compounds that show reversible transformations between a 3D metal-organic framework (MOF) of {[Co(mu-3isoani)(2)]center dot DMF}(n) (1) formula (where 3isoani - 3-aminoisonicotinato and DMF - dimethylformamide) and a 0D monomeric [Co(3isoani)(2)(H2O)(4)] (2) complex is reported. These 1 2 transformations, triggered by the exposure of the MOF and the monomer-based compound to H2O and DMF, respectively, involve colour changes from purple (in MOF 1) to light brown (in monomeric complex 2), which imbues the system with colourimetric sensing capacity towards these solvents. Despite the high reactivity of the MOF in contact with water, it presents good thermal stability and permanent porosity with a remarkably high CO2 capture capacity at room temperature (3.35 mmol/g), which is further analysed by in situ single-crystal X-ray diffraction. Experimental magnetic properties and CASSCF/NEVPT2 calculations of all compounds reveal distinct slow magnetic relaxations for 3D and 0D compounds.This work has been funded by the Spanish Ministry of Science, Innovation and Universities (MCIU/AEI/FEDER, UE; PGC2018-102052-A-C22, PGC2018-102052-B-C21 and PID2019-108028GBC21), University of the Basque Country (GIU20/028), Gobierno Vasco/Eusko Jaurlaritza (IT1005-16, IT1291-19) and Junta de Andalucia (FQM-394, B-FQM-734-UGR20). O.P.C. thanks his predoctoral fellowship to UPV/EHU. The authors thank for technical and human support provided by SGIker of UPV/EHU and European funding (ERDF and ESF)

    Brain tissue recovery in obstructive congenital hydrocephalus after intraventricular transplantation of mesenchymal stem cells

    Get PDF
    Introduction: Bone marrow-derived mesenchymal stem cells (BM-MSC) are a potential therapeutic tool due to their ability for migrating and producing neuroprotector factors when transplanted. The aim of this study was to evaluate the short-time effects of a BM-MSC experimental therapy in the hyh mouse model with severe obstructive hydrocephalus. Methods: BM-MSC were characterized in vitro and then injected into the ventricles of hyh mice. Wild-type and saline-injected hyh mice were used as controls. Samples were studied by analyzing and comparing mRNA, protein and metabolites level expression in control and damaged tissue. Results: Undifferentiated BM-MSC were found to: i) spread into the periventricular astrocyte reaction region after four days post-injection, and, ii) be producing neuroprotector factors (GDNF and VEGF). Astrocytes located in periventricular edematous region increased their aquaporin-4 expression, as well as Slit2 expression (neuroprotective and anti-inflammatory molecule). There was also a significant reduction of osmolytes such as taurine and neuroexcytotoxic glutamate. Halved apoptotic cell death was detected in the periventricular walls. Conclusions: BM-MSC lead to recovery of the severe neurodegenerative conditions associated to congenital hydrocephalus mediated by reactive astrocytes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Supported by Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech, and PI15/0619 (ISCIII/FEDER)
    corecore