2,859 research outputs found
Excitatory and Feed-Forward Inhibitory Hippocampal Synapses Work Synergistically as an Adaptive Filter of Natural Spike Trains
Short-term synaptic plasticity (STP) is an important mechanism for modifying neural circuits during computation. Although STP is much studied, its role in the processing of complex natural spike patterns is unknown. Here we analyze the responses of excitatory and inhibitory hippocampal synapses to natural spike trains at near-physiological temperatures. Our results show that excitatory and inhibitory synapses express complementary sets of STP components that selectively change synaptic strength during epochs of high-frequency discharge associated with hippocampal place fields. In both types of synapses, synaptic strength rapidly alternates between a near-constant level during low activity and another near-constant, but elevated (for excitatory synapses) or reduced (for inhibitory synapses) level during high-frequency epochs. These history-dependent changes in synaptic strength are largely independent of the particular temporal pattern within the discharges, and occur concomitantly in the two types of synapses. When excitatory and feed-forward inhibitory synapses are co-activated within the hippocampal feed-forward circuit unit, the net effect of their complementary STP is an additional increase in the gain of excitatory synapses during high-frequency discharges via selective disinhibition. Thus, excitatory and feed-forward inhibitory hippocampal synapses in vitro act synergistically as an adaptive filter that operates in a switch-like manner and is selective for high-frequency epochs
Multistationary and Oscillatory Modes of Free Radicals Generation by the Mitochondrial Respiratory Chain Revealed by a Bifurcation Analysis
The mitochondrial electron transport chain transforms energy satisfying cellular demand and generates reactive oxygen species (ROS) that act as metabolic signals or destructive factors. Therefore, knowledge of the possible modes and bifurcations of electron transport that affect ROS signaling provides insight into the interrelationship of mitochondrial respiration with cellular metabolism. Here, a bifurcation analysis of a sequence of the electron transport chain models of increasing complexity was used to analyze the contribution of individual components to the modes of respiratory chain behavior. Our algorithm constructed models as large systems of ordinary differential equations describing the time evolution of the distribution of redox states of the respiratory complexes. The most complete model of the respiratory chain and linked metabolic reactions predicted that condensed mitochondria produce more ROS at low succinate concentration and less ROS at high succinate levels than swelled mitochondria. This prediction was validated by measuring ROS production under various swelling conditions. A numerical bifurcation analysis revealed qualitatively different types of multistationary behavior and sustained oscillations in the parameter space near a region that was previously found to describe the behavior of isolated mitochondria. The oscillations in transmembrane potential and ROS generation, observed in living cells were reproduced in the model that includes interaction of respiratory complexes with the reactions of TCA cycle. Whereas multistationarity is an internal characteristic of the respiratory chain, the functional link of respiration with central metabolism creates oscillations, which can be understood as a means of auto-regulation of cell metabolism. © 2012 Selivanov et al
Recommended from our members
Characterizing the dynamics of multi-scale global high impact weather events.
The quantitative characterization and prediction of localized severe weather events that emerge as coherences generated by the highly non-linear interacting multivariate dynamics of global weather systems poses a significant challenge whose solution is increasingly important in the face of climate change where weather extremes are on the rise. As weather measurement systems (multiband satellite, radar, etc) continue to dramatically improve, increasingly complex time-dependent multivariate 3D datasets offer the potential to inform such problems but pose an increasingly daunting computational challenge. Here we describe the application to global weather systems of a novel computational method called the Entropy Field Decomposition (EFD) capable of efficiently characterizing coherent spatiotemporal structures in non-linear multivariate interacting physical systems. Using the EFD derived system configurations, we demonstrate the application of a second novel computational method called Space-Time Information Trajectories (STITs) that reveal how spatiotemporal coherences are dynamically connected. The method is demonstrated on the specific phenomenon known as atmospheric rivers (ARs) which are a prime example of a highly coherent, in both space and time, severe weather phenomenon whose generation and persistence are influenced by weather dynamics on a wide range of spatial and temporal scales. The EFD reveals how the interacting wind vector field and humidity scalar field couple to produce ARs, while the resulting STITS reveal the linkage between ARs and large-scale planetary circulations. The focus on ARs is also motivated by their devastating social and economic effects that have made them the subject of increasing scientific investigation to which the EFD may offer new insights. The application of EFD and STITs to the broader range of severe weather events is discussed
Phonon-induced decay of the electron spin in quantum dots
We study spin relaxation and decoherence in a
GaAs quantum dot due to spin-orbit interaction. We derive an effective
Hamiltonian which couples the electron spin to phonons or any other fluctuation
of the dot potential. We show that the spin decoherence time is as large
as the spin relaxation time , under realistic conditions. For the
Dresselhaus and Rashba spin-orbit couplings, we find that, in leading order,
the effective magnetic field can have only fluctuations transverse to the
applied magnetic field. As a result, for arbitrarily large Zeeman
splittings, in contrast to the naively expected case
. We show that the spin decay is drastically suppressed for
certain magnetic field directions and values of the
Rashba coupling constant. Finally, for the spin coupling to acoustic phonons,
we show that
for all spin-orbit mechanisms in leading order in the
electron-phonon interaction.Comment: 5 pages, 1 figur
Spectrum of Andreev Bound States in a Molecule Embedded Inside a Microwave-Excited Superconducting Junction
Non-dissipative Josephson current through nanoscale superconducting
constrictions is carried by spectroscopically sharp energy states, so-called
Andreev bound states. Although theoretically predicted almost 40 years ago, no
direct spectroscopic evidence of these Andreev bound states exists to date. We
propose a novel type of spectroscopy based on embedding a superconducting
constriction, formed by a single-level molecule junction, in a microwave QED
cavity environment. In the electron-dressed cavity spectrum we find a polariton
excitation at twice the Andreev bound state energy, and a superconducting-phase
dependent ac Stark shift of the cavity frequency. Dispersive measurement of
this frequency shift can be used for Andreev bound state spectroscopy.Comment: Published version; 4+ pages, 3 figure
- …