3,188 research outputs found

    Optimal fidelity of teleportation of coherent states and entanglement

    Full text link
    We study the Braunstein-Kimble protocol for the continuous variable teleportation of a coherent state. We determine lower and upper bounds for the optimal fidelity of teleportation, maximized over all local Gaussian operations for a given entanglement of the two-mode Gaussian state shared by the sender (Alice) and the receiver (Bob). We also determine the optimal local transformations at Alice and Bob sites and the corresponding maximum fidelity when one restricts to local trace-preserving Gaussian completely positive maps.Comment: 10 pages, 2 figure

    Kondo effect of Co adatoms on Ag monolayers on noble metal surfaces

    Full text link
    The Kondo temperature TKT_K of single Co adatoms on monolayers of Ag on Cu and Au(111) is determined using Scanning Tunneling Spectroscopy. TKT_K of Co on a single monolayer of Ag on either substrate is essentially the same as that of Co on a homogenous Ag(111) crystal. This gives strong evidence that the interaction of surface Kondo impurities with the substrate is very local in nature. By comparing TKT_K found for Co on Cu, Ag, and Au (111)-surfaces we show that the energy scale of the many-electron Kondo state is insensitive to the properties of surface states and to the energetic position of the projected bulk band edges.Comment: 4 pages, 3 figure

    Local pressure-induced metallization of a semiconducting carbon nanotube in a crossed junction

    Full text link
    The electronic and vibrational density of states of a semiconducting carbon nanotube in a crossed junction was investigated by elastic and inelastic scanning tunneling spectroscopy. The strong radial compression of the nanotube at the junction induces local metallization spatially confined to a few nm. The local electronic modifications are correlated with the observed changes in the radial breathing and G-band phonon modes, which react very sensitively to local mechanical deformation. In addition, the experiments reveal the crucial contribution of the image charges to the contact potential at nanotube-metal interfaces

    Quantum dislocations: the fate of multiple vacancies in two dimensional solid 4He

    Full text link
    Defects are believed to play a fundamental role in the supersolid state of 4He. We have studied solid 4He in two dimensions (2D) as function of the number of vacancies n_v, up to 30, inserted in the initial configuration at rho = 0.0765 A^-2, close to the melting density, with the exact zero temperature Shadow Path Integral Ground State method. The crystalline order is found to be stable also in presence of many vacancies and we observe two completely different regimes. For small n_v, up to about 6, vacancies form a bound state and cause a decrease of the crystalline order. At larger n_v, the formation energy of an extra vacancy at fixed density decreases by one order of magnitude to about 0.6 K. In the equilibrated state it is no more possible to recognize vacancies because they mainly transform into quantum dislocations and crystalline order is found almost independent on how many vacancies have been inserted in the initial configuration. The one--body density matrix in this latter regime shows a non decaying large distance tail: dislocations, that in 2D are point defects, turn out to be mobile, their number is fluctuating, and they are able to induce exchanges of particles across the system mainly triggered by the dislocation cores. These results indicate that the notion of incommensurate versus commensurate state loses meaning for solid 4He in 2D, because the number of lattice sites becomes ill defined when the system is not commensurate. Crystalline order is found to be stable also in 3D in presence of up to 100 vacancies

    Pulse Control of Decoherence in a Qubit Coupled with a Quantum Environment

    Full text link
    We study the time evolution of a qubit linearly coupled with a quantum environment under a sequence of short pi pulses. Our attention is focused on the case where qubit-environment interactions induce the decoherence with population decay. We assume that the environment consists of a set of bosonic excitations. The time evolution of the reduced density matrix for the qubit is calculated in the presence of periodic short pi pulses. We confirm that the decoherence is suppressed if the pulse interval is shorter than the correlation time for qubit-environment interactions.Comment: 5 pages, 2figure

    Quantum Coherence of Image-Potential States

    Full text link
    The quantum dynamics of the two-dimensional image-potential states in front of the Cu(100) surface is measured by scanning tunneling microscopy (STM) and spectroscopy (STS). The dispersion relation and the momentum resolved phase-relaxation time of the first image-potential state are determined from the quantum interference patterns in the local density of states (LDOS) at step edges. It is demonstrated that the tip-induced Stark shift does not affect the motion of the electrons parallel to the surface.Comment: Submitted to Phys. Rev. Lett., 4 pages, 4 figures; corrected typos, minor change

    Minimal qudit code for a qubit in the phase-damping channel

    Full text link
    Using the stabilizer formalism we construct the minimal code into a D-dimensional Hilbert space (qudit) to protect a qubit against phase damping. The effectiveness of this code is then studied by means of input-output fidelity.Comment: 9 pages, 3 figures. REVTe

    Quantum versus Semiclassical Description of Selftrapping: Anharmonic Effects

    Full text link
    Selftrapping has been traditionally studied on the assumption that quasiparticles interact with harmonic phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclassical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum mechanical analysis of a two-site system, where the oscillator is described by a tunably anharmonic potential, with a square well with infinite walls and the harmonic potential as its extreme limits, and wherein the interaction is nonlinear in the oscillator displacement. We find that even highly anharmonic polarons behave similar to their harmonic counterparts in that selftrapping is preserved for long times in the limit of strong coupling, and that the polaronic tunneling time scale depends exponentially on the polaron binding energy. Further, in agreement, with earlier results related to harmonic polarons, the semiclassical approximation agrees with the full quantum result in the massive oscillator limit of small oscillator frequency and strong quasiparticle-oscillator coupling.Comment: 10 pages, 6 figures, to appear in Phys. Rev.

    Synchronized pulse control of decoherence

    Full text link
    We present a new strategy for multipulse control over decoherence. When a two-level system interacts with a reservoir characterized by a specific frequency, we find that the decoherence is effectively suppressed by synchronizing the pulse-train application with the dynamical motion of the reservoir.Comment: 14 pages, 8 figure
    • …
    corecore