742 research outputs found

    Hamilton-Jacobi Diffieties

    Full text link
    Diffieties formalize geometrically the concept of differential equations. We introduce and study Hamilton-Jacobi diffieties. They are finite dimensional subdiffieties of a given diffiety and appear to play a special role in the field theoretic version of the geometric Hamilton-Jacobi theory.Comment: 31 pages, to appear in Journal of Geometry and Physics, slight changes in the presentation to match the version accepted by the journa

    Iterated Differential Forms III: Integral Calculus

    Full text link
    Basic elements of integral calculus over algebras of iterated differential forms, are presented. In particular, defining complexes for modules of integral forms are described and the corresponding berezinians and complexes of integral forms are computed. Various applications and the integral calculus over the algebra Λ∞\Lambda_{\infty} will be discussed in subsequent notes.Comment: 7 pages, submitted to Math. Dok

    Iterated Differential Forms VI: Differential Equations

    Full text link
    We describe the first term of the Λk−1C\Lambda_{k-1}\mathcal{C}--spectral sequence (see math.DG/0610917) of the diffiety (E,C), E being the infinite prolongation of an l-normal system of partial differential equations, and C the Cartan distribution on it.Comment: 8 pages, to appear in Dokl. Mat

    Iterated Differential Forms V: C-Spectral Sequence on Infinite Jet Spaces

    Full text link
    In the preceding note math.DG/0610917 the Λk−1C\Lambda_{k-1}\mathcal{C}--spectral sequence, whose first term is composed of \emph{secondary iterated differential forms}, was constructed for a generic diffiety. In this note the zero and first terms of this spectral sequence are explicitly computed for infinite jet spaces. In particular, this gives an explicit description of secondary covariant tensors on these spaces and some basic operations with them. On the basis of these results a description of the Λk−1C\Lambda_{k-1}\mathcal{C}--spectral sequence for infinitely prolonged PDE's will be given in the subsequent note.Comment: 9 pages, to appear in Math. Dok

    The Hamilton-Jacobi Formalism for Higher Order Field Theories

    Full text link
    We extend the geometric Hamilton-Jacobi formalism for hamiltonian mechanics to higher order field theories with regular lagrangian density. We also investigate the dependence of the formalism on the lagrangian density in the class of those yelding the same Euler-Lagrange equations.Comment: 25 page

    electron-positron-photon plasma around a collapsing star

    Full text link
    We describe electron-positron pairs creation around an electrically charged star core collapsing to an electromagnetic black hole (EMBH), as well as pairs annihilation into photons. We use the kinetic Vlasov equation formalism for the pairs and photons and show that a regime of plasma oscillations is established around the core. As a byproduct of our analysis we can provide an estimate for the thermalization time scale.Comment: 8 pages, 4 figures, to appear in the Proceedings of QABP200

    Partial Differential Hamiltonian Systems

    Full text link
    We define partial differential (PD in the following), i.e., field theoretic analogues of Hamiltonian systems on abstract symplectic manifolds and study their main properties, namely, PD Hamilton equations, PD Noether theorem, PD Poisson bracket, etc.. Unlike in standard multisymplectic approach to Hamiltonian field theory, in our formalism, the geometric structure (kinematics) and the dynamical information on the "phase space" appear as just different components of one single geometric object.Comment: 30 pages, the current version agrees with the published versio

    Domain modeling and grid generation for multi-block structured grids with application to aerodynamic and hydrodynamic configurations

    Get PDF
    About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation
    • …
    corecore