31 research outputs found

    Development of insect-resistant transgenic cabbage plants expressing a synthetic cryIA(b) gene from Bacillus thuringiensis

    Get PDF
    A synthetic cryIA(b) gene coding for an insecticidal crystal protein of Bacillus thuringiensis (Bt) was transferred to cabbage cultivar 'Golden Acre' by co-cultivating hypocotyl explants with Agrobacterium tumefaciens. Transformed plants resistant to kanamycin were regenerated. Hybridization experiments demonstrated gene integration and mRNA expression. Immunoblot analysis revealed high-level expression of Bt toxin protein in the transgenic plants. The expression resulted in a significant insecticidal activity of transgenic cabbage plants against the larvae of diamondback moth (Plutella xylostella). The results also demonstrated that a synthetic gene based on monocot codon usage can be expressed in dicotyledonous plants for insect control

    Accelerating Universe from an Evolving Lambda in Higher Dimension

    Full text link
    We find exact solutions in five dimensional inhomogeneous matter dominated model with a varying cosmological constant. Adjusting arbitrary constants of integration one can also achieve acceleration in our model. Aside from an initial singularity our spacetime is regular everywhere including the centre of the inhomogeneous distribution. We also study the analogous homogeneous universe in (4+d) dimensions. Here an initially decelerating model is found to give late acceleration in conformity with the current observational demands. We also find that both anisotropy and number of dimensions have a role to play in determining the time of flip, in fact the flip is delayed in multidimensional models. Some astrophysical parameters like the age, luminosity distance etc are also calculated and the influence of extra dimensions is briefly discussed. Interestingly our model yields a larger age of the universe compared to many other quintessential models.Comment: 18 pages, 9 figure

    PPARα: energy combustion, hypolipidemia, inflammation and cancer

    Get PDF
    The peroxisome proliferator-activated receptor α (PPARα, or NR1C1) is a nuclear hormone receptor activated by a structurally diverse array of synthetic chemicals known as peroxisome proliferators. Endogenous activation of PPARα in liver has also been observed in certain gene knockout mouse models of lipid metabolism, implying the existence of enzymes that either generate (synthesize) or degrade endogenous PPARα agonists. For example, substrates involved in fatty acid oxidation can function as PPARα ligands. PPARα serves as a xenobiotic and lipid sensor to regulate energy combustion, hepatic steatosis, lipoprotein synthesis, inflammation and liver cancer. Mainly, PPARα modulates the activities of all three fatty acid oxidation systems, namely mitochondrial and peroxisomal β-oxidation and microsomal ω-oxidation, and thus plays a key role in energy expenditure. Sustained activation of PPARα by either exogenous or endogenous agonists leads to the development of hepatocellular carcinoma resulting from sustained oxidative and possibly endoplasmic reticulum stress and liver cell proliferation. PPARα requires transcription coactivator PPAR-binding protein (PBP)/mediator subunit 1(MED1) for its transcriptional activity

    Coexpression of Nuclear Receptors and Histone Methylation Modifying Genes in the Testis: Implications for Endocrine Disruptor Modes of Action

    Get PDF
    BACKGROUND: Endocrine disruptor chemicals elicit adverse health effects by perturbing nuclear receptor signalling systems. It has been speculated that these compounds may also perturb epigenetic mechanisms and thus contribute to the early origin of adult onset disease. We hypothesised that histone methylation may be a component of the epigenome that is susceptible to perturbation. We used coexpression analysis of publicly available data to investigate the combinatorial actions of nuclear receptors and genes involved in histone methylation in normal testis and when faced with endocrine disruptor compounds. METHODOLOGY/PRINCIPAL FINDINGS: The expression patterns of a set of genes were profiled across testis tissue in human, rat and mouse, plus control and exposed samples from four toxicity experiments in the rat. Our results indicate that histone methylation events are a more general component of nuclear receptor mediated transcriptional regulation in the testis than previously appreciated. Coexpression patterns support the role of a gatekeeper mechanism involving the histone methylation modifiers Kdm1, Prdm2, and Ehmt1 and indicate that this mechanism is a common determinant of transcriptional integrity for genes critical to diverse physiological endpoints relevant to endocrine disruption. Coexpression patterns following exposure to vinclozolin and dibutyl phthalate suggest that coactivity of the demethylase Kdm1 in particular warrants further investigation in relation to endocrine disruptor mode of action. CONCLUSIONS/SIGNIFICANCE: This study provides proof of concept that a bioinformatics approach that profiles genes related to a specific hypothesis across multiple biological settings can provide powerful insight into coregulatory activity that would be difficult to discern at an individual experiment level or by traditional differential expression analysis methods

    Insect resistance of transgenic broccoli ('Pusa Broccoli KTS-1') expressing a synthetic cryIA(b) gene

    No full text
    Broccoli has no suitable genes for insect resistance within the gene pool for transfer through conventional breeding. A protocol was optimized for transformation of hypocotyl explants of broccoli based on transient GUS expression. A synthetic cryIA(b) gene coding for an insecticidal crystal protein (ICP) of Bacillus thuringiensis (Bt) was transferred to the broccoli cultivar ´Pusa Broccoli KTS-1` by co-cultivating hypocotyls explants with Agrobacterium tumefaciens. Transformed plants resistant to kanamycin were regenerated. Molecular analysis demonstrated gene integration and expression. Immunoblot analysis revealed high-level expression of Bt toxin protein in the transgenic plants. In insect feeding bioassay, transgenics showed significant and effective resistance against the larvae of the diamondback moth (Plutella xylostella). Inheritance of the transgene was confirmed in Tl seedlings
    corecore