19 research outputs found

    Unraveling genetic predisposition to familial or early onset gastric cancer using germline whole-exome sequencing

    Get PDF
    Recognition of individuals with a genetic predisposition to gastric cancer (GC) enables preventive measures. However, the underlying cause of genetic susceptibility to gastric cancer remains largely unexplained. We performed germline whole-exome sequencing on leukocyte DNA of 54 patients from 53 families with genetically unexplained diffuse-type and intestinal-type GC to identify novel GC-predisposing candidate genes. As young age at diagnosis and familial clustering are hallmarks of genetic tumor susceptibility, we selected patients that were diagnosed below the age of 35, patients from families with two cases of GC at or below age 60 and patients from families with three GC cases at or below age 70. All included individuals were tested negative for germline CDH1 mutations before or during the study. Variants that were possibly deleterious according to in silico predictions were filtered using several independent approaches that were based on gene function and gene mutation burden in controls. Despite a rigorous search, no obvious candidate GC predisposition genes were identified. This negative result stresses the importance of future research studies in large, homogeneous cohorts

    A de novo paradigm for male infertility

    Get PDF
    Genetics of Male Infertility Initiative (GEMINI) consortium: Donald F. Conrad, Liina Nagirnaja, Kenneth I. Aston, Douglas T. Carrell, James M. Hotaling, Timothy G. Jenkins, Rob McLachlan, Moira K. O’Bryan, Peter N. Schlegel, Michael L. Eisenberg, Jay I. Sandlow, Emily S. Jungheim, Kenan R. Omurtag, Alexandra M. Lopes, Susana Seixas, Filipa Carvalho, Susana Fernandes, Alberto Barros, João Gonçalves, Iris Caetano, Graça Pinto, Sónia Correia, Maris Laan, Margus Punab, Ewa Rajpert-De Meyts, Niels Jørgensen, Kristian Almstrup, Csilla G. Krausz & Keith A. Jarvi.De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10−5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10−4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.This project was funded by The Netherlands Organization for Scientific Research (918-15-667) to J.A.V. as well as an Investigator Award in Science from the Wellcome Trust (209451) to J.A.V. a grant from the Catherine van Tussenbroek Foundation to M.S.O. a grant from MERCK to R.S. a UUKi Rutherford Fund Fellowship awarded to B.J.H. and the German Research Foundation Clinical Research Unit “Male Germ Cells” (DFG, CRU326) to C.F. and F.T. This project was also supported in part by funding from the Australian National Health and Medical Research Council (APP1120356) to M.K.O.B., by grants from the National Institutes of Health of the United States of America (R01HD078641 to D.F.C. and K.I.A., P50HD096723 to D.F.C.) and from the Biotechnology and Biological Sciences Research Council (BB/S008039/1) to D.J.E.info:eu-repo/semantics/publishedVersio

    Genetic studies in intellectual disability and related disorders

    No full text
    Item does not contain fulltextGenetic factors play a major part in intellectual disability (ID), but genetic studies have been complicated for a long time by the extreme clinical and genetic heterogeneity. Recently, progress has been made using different next-generation sequencing approaches in combination with new functional readout systems. This approach has provided novel insights into the biological pathways underlying ID, improved the diagnostic process and offered new targets for therapy. In this Review, we highlight the insights obtained from recent studies on the role of genetics in ID and its impact on diagnosis, prognosis and therapy. We also discuss the future directions of genetics research for ID and related neurodevelopmental disorders

    Non-invasive prenatal diagnosis of fetal aneuploidies using massively parallel sequencing-by-ligation and evidence that cell-free fetal DNA in the maternal plasma originates from cytotrophoblastic cells.

    No full text
    Item does not contain fulltextBlood plasma of pregnant women contains circulating cell-free fetal DNA (ccffDNA), originating from the placenta. The use of this DNA for non-invasive detection of fetal aneuploidies using massively parallel sequencing (MPS)-by-synthesis has been proven previously. Sequence performance may, however, depend on the MPS platform and therefore we have explored the possibility for multiplex MPS-by-ligation, using the Applied Biosystems SOLiD() 4 system. DNA isolated from plasma samples from 52 pregnant women, carrying normal or aneuploid fetuses, was sequenced in multiplex runs of 4, 8 or 16 samples simultaneously. The sequence reads were mapped to the human reference genome and quantified according to their genomic location. In case of a fetal aneuploidy, the number of reads of the aberrant chromosome is expected to be higher or lower than in normal reference samples. To statistically determine this, Z-scores per chromosome were calculated as described previously, with thresholds for aneuploidies set at > +3.0 and < -3.0 for chromosomal over- or underrepresentation, respectively. All samples from fetal aneuploidies yielded Z-scores outside the thresholds for the aberrant chromosomes, with no false negative or positive results. Full-blown fetal aneuploidies can thus be reliably detected in maternal plasma using a multiplex MPS-by-ligation approach. Furthermore, the results obtained with a sample from a pregnancy with 45,X in the cytotrophoblastic cell layer and 46,XX in the mesenchymal core cells show that ccffDNA originates from the cytotrophoblastic cell layer. Discrepancies between the genetic constitution of this cell layer and the fetus itself are well known, and therefore, care should be taken when translating results to the fetus itself.1 juni 201

    De novo mutations in children born after medical assisted reproduction

    No full text
    STUDY QUESTION: Are there more de novo mutations (DNMs) present in the genomes of children born through medical assisted reproduction (MAR) compared to spontaneously conceived children? SUMMARY ANSWER: In this pilot study, no statistically significant difference was observed in the number of DNMs observed in the genomes of MAR children versus spontaneously conceived children. WHAT IS KNOWN ALREADY: DNMs are known to play a major role in sporadic disorders with reduced fitness such as severe developmental disorders, including intellectual disability and epilepsy. Advanced paternal age is known to place offspring at increased disease risk, amongst others by increasing the number of DNMs in their genome. There are very few studies reporting on the effect of MAR on the number of DNMs in the offspring, especially when male infertility is known to be affecting the potential fathers. With delayed parenthood an ongoing epidemiological trend in the 21st century, there are more children born from fathers of advanced age and more children born through MAR every day. STUDY DESIGN, SIZE, DURATION: This observational pilot study was conducted from January 2015 to March 2019 in the tertiary care centre at Radboud University Medical Center. We included a total of 53 children and their respective parents, forming 49 trios (mother, father and child) and two quartets (mother, father and two siblings). One group of children was born after spontaneous conception (n = 18); a second group of children born after IVF (n = 17) and a third group of children born after ICSI combined with testicular sperm extraction (ICSI-TESE) (n = 18). In this pilot study, we also subdivided each group by paternal age, resulting in a subgroup of children born to younger fathers (45 years of age at conception). PARTICIPANTS/MATERIALS, SETTING, METHODS: Whole-genome sequencing (WGS) was performed on all parent-offspring trios to identify DNMs. For 34 of 53 trios/quartets, WGS was performed twice to independently detect and validate the presence of DNMs. Quality of WGS-based DNM calling was independently assessed by targeted Sanger sequencing. MAIN RESULTS AND THE ROLE OF CHANCE: No significant differences were observed in the number of DNMs per child for the different methods of conception, independent of parental age at conception (multi-factorial ANOVA, f(2) = 0.17, P-value = 0.85). As expected, a clear paternal age effect was observed after adjusting for method of conception and maternal age at conception (multiple regression model, t = 5.636, P-value = 8.97 × 10-7), with on average 71 DNMs in the genomes of children born to young fathers (45 years of age). LIMITATIONS, REASONS FOR CAUTION: This is a pilot study and other small-scale studies have recently reported contrasting results. Larger unbiased studies are required to confirm or falsify these results. WIDER IMPLICATIONS OF THE FINDINGS: This pilot study did not show an effect for the method of conception on the number of DNMs per genome in offspring. Given the role that DNMs play in disease risk, this negative result is good news for IVF and ICSI-TESE born children, if replicated in a larger cohort. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by the Netherlands Organisation for Scientific Research (918-15-667) and by an Investigator Award in Science from the Wellcome Trust (209451). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A

    Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration

    No full text
    Item does not contain fulltextAIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far
    corecore