4,619 research outputs found

    Domain wall switching: optimizing the energy landscape

    Full text link
    It has recently been suggested that exchange spring media offer a way to increase media density without causing thermal instability (superparamagnetism), by using a hard and a soft layer coupled by exchange. Victora has suggested a figure of merit xi = 2 E_b/mu_0 m_s H_sw, the ratio of the energy barrier to that of a Stoner-Wohlfarth system with the same switching field, which is 1 for a Stoner-Wohlfarth (coherently switching) particle and 2 for an optimal two-layer composite medium. A number of theoretical approaches have been used for this problem (e.g., various numbers of coupled Stoner-Wohlfarth layers and continuum micromagnetics). In this paper we show that many of these approaches can be regarded as special cases or approximations to a variational formulation of the problem, in which the energy is minimized for fixed magnetization. The results can be easily visualized in terms of a plot of the energy as a function of magnetic moment m_z, in which both the switching field [the maximum slope of E(m_z)] and the stability (determined by the energy barrier E_b) are geometrically visible. In this formulation we can prove a rigorous limit on the figure of merit xi, which can be no higher than 4. We also show that a quadratic anistropy suggested by Suess et al comes very close to this limit.Comment: Acccepted for proceedings of Jan. 2007 MMM Meeting, paper BE-0

    Relativistic general-order coupled-cluster method for high-precision calculations: Application to Al+ atomic clock

    Get PDF
    We report the implementation of a general-order relativistic coupled-cluster method for performing high-precision calculations of atomic and molecular properties. As a first application, the static dipole polarizabilities of the ground and first excited states of Al+ have been determined to precisely estimate the uncertainty associated with the BBR shift of its clock frequency measurement. The obtained relative BBR shift is -3.66+-0.44 for the 3s^2 ^1S_0^0 --> 3s3p ^3P_0^0 transition in Al+ in contrast to the value obtained in the latest clock frequency measurement, -9+-3 [Phys. Rev. Lett. 104, 070802 (2010)]. The method developed in the present work can be employed to study a variety of subtle effects such as fundamental symmetry violations in atoms.Comment: 4 pages, 3 tables, submitte

    Two-Particle Schroedinger Equation Animations of Wavepacket-Wavepacket Scattering (revised)

    Full text link
    A simple and explicit technique for the numerical solution of the two-particle, time-dependent Schr\"{o}dinger equation is assembled and tested. The technique can handle interparticle potentials that are arbitrary functions of the coordinates of each particle, arbitrary initial and boundary conditions, and multi-dimensional equations. Plots and animations are given here and on the World Wide Web of the scattering of two wavepackets in one dimension.Comment: 13 pages, 8 figures, animations at http://nacphy.physics.orst.edu/ComPhys/PACKETS

    Spin-torque switching: Fokker-Planck rate calculation

    Full text link
    We describe a new approach to understanding and calculating magnetization switching rates and noise in the recently observed phenomenon of "spin-torque switching". In this phenomenon, which has possible applications to information storage, a large current passing from a pinned ferromagnetic (FM) layer to a free FM layer switches the free layer. Our main result is that the spin-torque effect increases the Arrhenius factor exp(E/kT)\exp(-E/kT) in the switching rate, not by lowering the barrier EE, but by raising the effective spin temperature TT. To calculate this effect quantitatively, we extend Kramers' 1940 treatment of reaction rates, deriving and solving a Fokker-Planck equation for the energy distribution including a current-induced spin torque of the Slonczewski type. This method can be used to calculate slow switching rates without long-time simulations; in this Letter we calculate rates for telegraph noise that are in good qualitative agreement with recent experiments. The method also allows the calculation of current-induced magnetic noise in CPP (current perpendicular to plane) spin valve read heads.Comment: 11 pages, 8 figures, 1 appendix Original version in Nature format, replaced by Phys. Rev. Letters format. No substantive change

    Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant

    Get PDF
    Although the implications of calcium carbonate (CaCO(3)) precipitation by microorganisms in natural environments are quite relevant, the physiology and genetics of this phenomenon are poorly understood. We have chosen Bacillus subtilis 168 as our model to study which physiological aspects are associated with CaCO(3) (calcite) formation during biofilm development when grown on precipitation medium. A B. subtilis eftA mutant named FBC5 impaired in calcite precipitation was used for comparative studies. Our results demonstrate that inactivation of etfA causes a decrease in the pH of the precipitation medium during biofilm development. Further analysis demonstrated that eftA extrudes an excess of 0.7 mol H(+) L(-1) with respect to B. subtilis 168 strain. Using media buffered at different pH values, we were able to control calcite formation. Because etfA encodes the alpha-subunit of a putative flavoprotein involved in fatty acid metabolism, we compared the intracellular levels of NADH among strains. Our physiological assay showed that FBC5 accumulated up to 32 times more NADH than the wild-type strain. We propose that the accumulation of NADH causes a deregulation in the generation of the proton motive force (DeltamicroH(+)) in FBC5 producing the acidification

    Is Random Close Packing of Spheres Well Defined?

    Full text link
    Despite its long history, there are many fundamental issues concerning random packings of spheres that remain elusive, including a precise definition of random close packing (RCP). We argue that the current picture of RCP cannot be made mathematically precise and support this conclusion via a molecular dynamics study of hard spheres using the Lubachevsky-Stillinger compression algorithm. We suggest that this impasse can be broken by introducing the new concept of a maximally random jammed state, which can be made precise.Comment: 6 pages total, 2 figure
    corecore