70 research outputs found

    Long-term heart transplant survival by targeting the ionotropic purinergic receptor P2X7

    Get PDF
    Background: Heart transplantation is a lifesaving procedure for patients with end-stage heart failure. Despite much effort and advances in the field, current immunosuppressive regimens are still associated with poor long-term cardiac allograft outcomes, and with the development of complications, including infections and malignancies, as well. The development of a novel, short-term, and effective immunomodulatory protocol will thus be an important achievement. The purine ATP, released during cell damage/activation, is sensed by the ionotropic purinergic receptor P2X7 (P2X7R) on lymphocytes and regulates T-cell activation. Novel clinical-grade P2X7R inhibitors are available, rendering the targeting of P2X7R a potential therapy in cardiac transplantation. Methods and Results: We analyzed P2X7R expression in patients and mice and P2X7R targeting in murine recipients in the context of cardiac transplantation. Our data demonstrate that P2X7R is specifically upregulated in graft-infiltrating lymphocytes in cardiac-transplanted humans and mice. Short-term P2X7R targeting with periodate-oxidized ATP promotes long-term cardiac transplant survival in 80% of murine recipients of a fully mismatched allograft. Long-term survival of cardiac transplants was associated with reduced T-cell activation, T-helper cell 1/T-helper cell 17 differentiation, and inhibition of STAT3 phosphorylation in T cells, thus leading to a reduced transplant infiltrate and coronaropathy. In vitro genetic upregulation of the P2X7R pathway was also shown to stimulate T-helper cell 1/T-helper cell 17 cell generation. Finally, P2X7R targeting halted the progression of coronaropathy in a murine model of chronic rejection as well. Conclusions: P2X7R targeting is a novel clinically relevant strategy to prolong cardiac transplant survival. \ua9 2012 American Heart Association, Inc

    In Vitro Effects of Pirfenidone on Cardiac Fibroblasts: Proliferation, Myofibroblast Differentiation, Migration and Cytokine Secretion

    Get PDF
    Cardiac fibroblasts (CFs) are the primary cell type responsible for cardiac fibrosis during pathological myocardial remodeling. Several studies have illustrated that pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) attenuates cardiac fibrosis in different animal models. However, the effects of pirfenidone on cardiac fibroblast behavior have not been examined. In this study, we investigated whether pirfenidone directly modulates cardiac fibroblast behavior that is important in myocardial remodeling such as proliferation, myofibroblast differentiation, migration and cytokine secretion. Fibroblasts were isolated from neonatal rat hearts and bioassays were performed to determine the effects of pirfenidone on fibroblast function. We demonstrated that treatment of CFs with pirfenidone resulted in decreased proliferation, and attenuated fibroblast α-smooth muscle actin expression and collagen contractility. Boyden chamber assay illustrated that pirfenidone inhibited fibroblast migration ability, probably by decreasing the ratio of matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1. Furthermore, pirfenidone attenuated the synthesis and secretion of transforming growth factor-β1 but elevated that of interleukin-10. These direct and pleiotropic effects of pirfenidone on cardiac fibroblasts point to its potential use in the treatment of adverse myocardial remodeling

    P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes

    Get PDF
    Purinergic receptor-7 (P2X7R) signaling controls Th17 and Th1 generation/differentiation, while NOD-like receptor P3 (NLRP3) acts as a Th2 transcriptional factor. Here, we demonstrated the existence of a P2X7R/NLRP3 pathway in T cells that is dysregulated by a P2X7R intracellular region loss-of-function mutation, leading to NLRP3 displacement and to excessive Th17 generation due to abrogation of the NLRP3-mediated Th2 program. This ultimately resulted in poor outcomes in cardiac-transplanted patients carrying the mutant allele, who showed abnormal Th17 generation. Transient NLRP3 silencing in nonmutant T cells or overexpression in mutant T cells normalized the Th profile. Interestingly, IL-17 blockade reduced Th17 skewing of human T cells in vitro and abrogated the severe allograft vasculopathy and abnormal Th17 generation observed in preclinical models in which P2X7R was genetically deleted. This P2X7R intracellular region mutation thus impaired the modulatory effects of P2X7R on NLRP3 expression and function in T cells and led to NLRP3 dysregulation and Th17 skewing, delineating a high-risk group of cardiac-transplanted patients who may benefit from personalized therapy

    Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence

    Get PDF
    Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells’ oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells’ hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress

    Hyperoxia-responsive proteins in rat pulmonary microvascular endothelial cells

    No full text

    The purinergic system in allotransplantation

    No full text
    The purine nucleotide adenosine triphosphate (ATP) is a universal source of energy for any intracellular reaction. Under specific physiological or pathological conditions, ATP can be released into extracellular spaces, where it binds and activates the purinergic receptors system (i.e. P2X, P2Y and P1 receptors). Extracellular ATP (eATP) binds to P2X or P2Y receptors in immune cells, where it mediates proliferation, chemotaxis, cytokine release, antigen presentation and cytotoxicity. eATP is then hydrolyzed by ectonucleotidases into adenosine diphosphate (ADP), which activates P2Y receptors. Ectonucleotidases also hydrolyze ADP to adenosine monophosphate and adenosine, which binds P1 receptors. In contrast to P2X and P2Y receptors, P1 receptors exert mainly an inhibitory effect on the immune response. In transplantation, a prominent role has been demonstrated for the eATP/P2X7R axis; the targeting of this pathway in fact is associated with long-term graft function and reduced graft versus host disease severity in murine models. Novel P2X receptor inhibitors are available for clinical use and are under assessment as immunomodulatory agents. In this review, we will focus on the relevance of the purinergic system and on the potential benefits of targeting this system in allograft rejection and tolerance

    Multiple mRNA species generated by alternate polyadenylation from the rat manganese superoxide dismutase gene.

    No full text
    The mitochondrial enzyme, manganese superoxide dismutase (MnSOD) is an integral component of the cell's defense against superoxide-mediated cellular damage. We have isolated and characterized four cDNA clones and the structural gene for rat MnSOD. Northern analyses using MnSOD cDNA probes detected at least five mRNAs in all tissues and cell types examined. Southern and Northern analysis using a 3' non-coding sequence probe, common to all the cDNAs, showed hybridization only to genomic restriction fragments that correspond to our genomic clone and the five MnSOD mRNAs. These data demonstrate that all of the rat MnSOD transcripts are derived from a single functional gene. Primer extension data indicate that transcription initiation is clustered within a few bases. Northern analysis using intron probes demonstrates that all five transcripts are fully processed. Northern analysis using cDNA and genomic probes from sequences progressively 3' to the end of the coding sequence indicates that size heterogeneity in the MnSOD transcripts results from variations in the length of the 3' non-coding sequence. From this data and the location of potential polyadenylation signals near the expected sites of transcript termination, we conclude that the existence of multiple MnSOD mRNA species originate as the result of alternate polyadenylation

    Thrombocytopenia in Small-for-Gestational-Age Infants

    No full text
    • …
    corecore