11 research outputs found
Stimulus site and modality dependence of functional activity within the human spinal cord
Chronic pain is thought to arise because of maladaptive changes occurring within the peripheral nervous system and CNS. The transition from acute to chronic pain is known to involve the spinal cord (Woolf and Salter, 2000). Therefore, to investigate altered human spinal cord function and translate results obtained from other species, a noninvasive neuroimaging technique is desirable. We have investigated the functional response in the cervical spinal cord of 18 healthy human subjects (aged 22-40 years) to noxious thermal and non-noxious tactile stimulation of the left and right forearms. Physiological noise, which is a significant source of signal variability in the spinal cord, was accounted for in the general linear model. Group analysis, performed using a mixed-effects model, revealed distinct regions of activity that were dependent on both the side and the type of stimulation. In particular, thermal stimulation on the medial aspect of the wrist produced activity within the C6/C5 segment ipsilateral to the side of stimulation. Similar to data recorded in animals (Fitzgerald, 1982), painful thermal stimuli produced increased ipsilateral and decreased contralateral blood flow, which may reflect, respectively, excitatory and inhibitory processes. Nonpainful punctate stimulation of the thenar eminence provoked more diffuse activity but was still ipsilateral to the side of stimulation. These results present the first noninvasive evidence for a lateralized response to noxious and non-noxious stimuli in the human spinal cord. The development of these techniques opens the path to understanding, at a subject-specific level, central sensitization processes that contribute to chronic pain states
Recommended from our members
Opioid suppression of conditioned anticipatory brain responses to breathlessness
Opioid painkillers are a promising treatment for chronic breathlessness, but are associated with potentially fatal side effects. In the treatment of breathlessness, their mechanisms of action are unclear. A better understanding might help to identify safer alternatives. Learned associations between previously neutral stimuli (e.g. stairs) and repeated breathlessness induce an anticipatory threat response that may worsen breathlessness, contributing to the downward spiral of decline seen in clinical populations. As opioids are known to influence associative learning, we hypothesized that they may interfere with the brain processes underlying a conditioned anticipatory response to breathlessness in relevant brain areas, including the amygdala and the hippocampus.
Healthy volunteers viewed visual cues (neutral stimuli) immediately before induction of experimental breathlessness with inspiratory resistive loading. Thus, an association was formed between the cue and breathlessness. Subsequently, this paradigm was repeated in two identical neuroimaging sessions with intravenous infusions of either low-dose remifentanil (0.7ng/ml target controlled infusion) or saline (randomised).
During saline infusion, breathlessness anticipation activated the right anterior insula and the adjacent operculum. Breathlessness was associated with activity in a network including the insula, operculum, dorsolateral prefrontal cortex, anterior cingulate cortex and the primary sensory and motor cortices.
Remifentanil reduced breathlessness unpleasantness but not breathlessness intensity. Remifentanil depressed anticipatory activity in the amygdala and the hippocampus that correlated with reductions in breathlessness unpleasantness. During breathlessness, remifentanil decreased activity in the anterior insula, anterior cingulate cortex and sensory motor cortices. Remifentanil-induced reduction in breathlessness unpleasantness was associated with increased activity in the rostral anterior cingulate cortex and nucleus accumbens, components of the endogenous opioid system known to decrease the perception of aversive stimuli.
These findings suggest that in addition to effects on brainstem respiratory control, opioids palliate breathlessness through an interplay of altered associative learning mechanisms. These mechanisms provide potential targets for novel ways to develop and assess treatments for chronic breathlessness
Central sensitisation in knee osteoarthritis: relating pre-surgical brainstem neuroimaging and paindetect based patient stratification to arthroplasty outcome
Objectives: the neural mechanisms of pain in knee OA are not fully understood: some patients have neuropathicâlike pain, associated with central sensitisation. We aimed to identify central sensitisation using neuroimaging and PainDETECT, and relate it to postâarthroplasty outcome.Methods: patients awaiting arthroplasty underwent quantitative sensory testing, psychological assessment and functional neuroimaging (fMRI). fMRI was conducted during punctate (n=24) and cold pain stimulation (n=20) to the affected knee. Postâoperative outcome was measured using: Oxford Knee Score; moderate to severe longâterm pain after arthroplasty and a range of painârelated questionnaires.Results: patients with neuropathicâlike pain preâsurgery, identified using PainDETECT, reported significantly higher pain to punctate and cold stimuli, near the affected joint. In these patients and when compared to those without neuropathicâlike pain, neural activity was significantly lower in the rostral anterior cingulate cortex and higher in the rostral ventromedial medulla (RVM) during punctate stimulation, with significant functional connectivity between these two areas. Preâoperative neuropathicâlike pain and higher neural activity in the RVM was associated with moderate to severe longâterm pain after arthroplasty.Conclusion: the psychophysical and neuroimaging data suggest that a subset of OA patients have centrally mediated pain sensitisation. This is likely due to supraspinally mediated reductions in inhibition, and increases in facilitation of nociceptive signaling, and was associated with a worse outcome following arthroplasty. The neurobiological confirmation of central sensitisation in patients with features of neuropathic pain, identified using PainDETECT, provides further support for the investigation of such bedâside measures for patient stratification to better predict postâsurgical outcome
Hippocampus mediates nocebo impairment of opioid analgesia through changes in functional connectivity
The neural mechanisms underlying placebo analgesia have attracted considerable attention over the recent years. In contrast, little is known about the neural underpinnings of a nocebo-induced increase in pain. We previously showed that nocebo-induced hyperalgesia is accompanied by increased activity in the hippocampus that scaled with the perceived level of anxiety. As a key node of the neural circuitry of perceived threat and fear, the hippocampus has recently been proposed to coordinate defensive behaviour in a context-dependent manner. Such a role requires close interactions with other regions involved in the detection of and responses to threat. Here, we investigated the functional connectivity of the hippocampus during nocebo-induced hyperalgesia. Our results show an increase in functional connectivity between hippocampus and brain regions implicated in the processing of sensory-discriminative aspects of pain (posterior insula and primary somatosensory/motor cortex) as well as the periaqueductal gray (PAG). This nocebo-induced increase in connectivity scaled with an individual's increase in anxiety. Moreover, hippocampus connectivity with the amygdala was negatively correlated with the pain intensity reported during nocebo hyperalgesia relative to the placebo condition. Our findings suggest that the hippocampus links nocebo-induced anxiety to a heightened responsiveness to nociceptive input through changes in its crosstalk with pain-modulatory brain areas
Hippocampus mediates nocebo impairment of opioid analgesia through changes in functional connectivity.
The neural mechanisms underlying placebo analgesia have attracted considerable attention over the recent years. In contrast, little is known about the neural underpinnings of a nocebo-induced increase in pain. We previously showed that nocebo-induced hyperalgesia is accompanied by increased activity in the hippocampus that scaled with the perceived level of anxiety. As a key node of the neural circuitry of perceived threat and fear, the hippocampus has recently been proposed to coordinate defensive behaviour in a context-dependent manner. Such a role requires close interactions with other regions involved in the detection of and responses to threat. Here, we investigated the functional connectivity of the hippocampus during nocebo-induced hyperalgesia. Our results show an increase in functional connectivity between hippocampus and brain regions implicated in the processing of sensory-discriminative aspects of pain (posterior insula and primary somatosensory/motor cortex) as well as the periaqueductal grey. This nocebo-induced increase in connectivity scaled with an individual's increase in anxiety. Moreover, hippocampus connectivity with the amygdala was negatively correlated with the pain intensity reported during nocebo hyperalgesia relative to the placebo condition. Our findings suggest that the hippocampus links nocebo-induced anxiety to a heightened responsiveness to nociceptive input through changes in its crosstalk with pain-modulatory brain areas
Learning to identify CNS drug action and efficacy using multistudy fMRI data
The therapeutic effects of centrally acting pharmaceuticals can manifest gradually and unreliably in patients, making the drug discovery process slow and expensive. Biological markers providing early evidence for clinical efficacy could help prioritize development of the more promising drug candidates. A potential source of such markers is functional magnetic resonance imaging (fMRI), a noninvasive imaging technique that can complement molecular imaging. fMRI has been used to characterize how drugs cause changes in brain activity. However, variation in study protocols and analysis techniques has made it difficult to identify consistent associations between subtle modulations of brain activity and clinical efficacy. We present and validate a general protocol for functional imagingâbased assessment of drug activity in the central nervous system. The protocol uses machine learning methods and data from multiple published studies to identify reliable associations between drug-related activity modulations and drug efficacy, which can then be used to assess new data. A proof-of-concept version of this approach was developed and is shown here for analgesics (pain medication), and validated with eight separate studies of analgesic compounds. Our results show that the systematic integration of multistudy data permits the generalized inferences required for drug discovery. Multistudy integrative strategies of this type could help optimize the drug discovery and validation pipeline
What should clinicians tell patients about placebo and nocebo effects? Practical considerations based on expert consensus
INTRODUCTION: Clinical and laboratory studies demonstrate that placebo and nocebo effects influence various symptoms and conditions after the administration of both inert and active treatments. OBJECTIVE: There is an increasing need for up-to-date recommendations on how to inform patients about placebo and nocebo effects in clinical practice and train clinicians how to disclose this information. METHODS: Based on previous clinical recommendations concerning placebo and nocebo effects, a 3-step, invitation-only Delphi study was conducted among an interdisciplinary group of internationally recognized experts. The study consisted of open- and closed-ended survey questions followed by a final expert meeting. The surveys were subdivided into 3 parts: (1) informing patients about placebo effects, (2) informing patients about nocebo effects, and (3) training clinicians how to communicate this information to the patients. RESULTS: There was consensus that communicating general information about placebo and nocebo effects to patients (e.g., explaining their role in treatment) could be beneficial, but that such information needs to be adjusted to match the specific clinical context (e.g., condition and treatment). Experts also agreed that training clinicians to communicate about placebo and nocebo effects should be a regular and integrated part of medical education that makes use of multiple formats, including face-to-face and online modalities. CONCLUSIONS: The current 3-step Delphi study provides consensus-based recommendations and practical considerations for disclosures about placebo and nocebo effects in clinical practice. Future research is needed on how to optimally tailor information to specific clinical conditions and patients' needs, and on developing standardized disclosure training modules for clinicians
IMI2-PainCare-BioPain-RCT2 protocol: a randomized, double-blind, placebo-controlled, crossover, multicenter trial in healthy subjects to investigate the effects of lacosamide, pregabalin, and tapentadol on biomarkers of pain processing observed by non-invasive neurophysiological measurements of human spinal cord and brainstem activity.
BACKGROUND: IMI2-PainCare-BioPain-RCT2 is one of four similarly designed clinical studies aiming at profiling a set of functional biomarkers of drug effects on specific compartments of the nociceptive system that could serve to accelerate the future development of analgesics. IMI2-PainCare-BioPain-RCT2 will focus on human spinal cord and brainstem activity using biomarkers derived from non-invasive neurophysiological measurements. METHODS: This is a multisite, single-dose, double-blind, randomized, placebo-controlled, 4-period, 4-way crossover, pharmacodynamic (PD) and pharmacokinetic (PK) study in healthy subjects. Neurophysiological biomarkers of spinal and brainstem activity (the RIII flexion reflex, the N13 component of somatosensory evoked potentials (SEP) and the R2 component of the blink reflex) will be recorded before and at three distinct time points after administration of three medications known to act on the nociceptive system (lacosamide, pregabalin, tapentadol), and placebo, given as a single oral dose in separate study periods. Medication effects on neurophysiological measures will be assessed in a clinically relevant hyperalgesic condition (high-frequency electrical stimulation of the skin), and in a non-sensitized normal condition. Patient-reported outcome measures (pain ratings and predictive psychological traits) will also be collected; and blood samples will be taken for pharmacokinetic modelling. A sequentially rejective multiple testing approach will be used with overall alpha error of the primary analysis split between the two primary endpoints, namely the percentage amplitude changes of the RIII area and N13 amplitude under tapentadol. Remaining treatment arm effects on RIII, N13 and R2 recovery cycle are key secondary confirmatory analyses. Complex statistical analyses and PK-PD modelling are exploratory. DISCUSSION: The RIII component of the flexion reflex is a pure nociceptive spinal reflex widely used for investigating pain processing at the spinal level. It is sensitive to different experimental pain models and to the antinociceptive activity of drugs. The N13 is mediated by large myelinated non-nociceptive fibers and reflects segmental postsynaptic response of wide dynamic range dorsal horn neurons at the level of cervical spinal cord, and it could be therefore sensitive to the action of drugs specifically targeting the dorsal horn. The R2 reflex is mediated by large myelinated non-nociceptive fibers, its circuit consists of a polysynaptic chain lying in the reticular formation of the pons and medulla. The recovery cycle of R2 is widely used for assessing brainstem excitability. For these reasons, IMI2-PainCare-BioPain-RCT2 hypothesizes that spinal and brainstem neurophysiological measures can serve as biomarkers of target engagement of analgesic drugs for future Phase 1 clinical trials. Phase 2 and 3 clinical trials could also benefit from these tools for patient stratification. TRIAL REGISTRATION: This trial was registered on 02 February 2019 in EudraCT ( 2019-000755-14 )