12 research outputs found

    Identification, cloning and functional characterization of novel beta-defensins in the rat (Rattus norvegicus)

    Get PDF
    BACKGROUND: beta-defensins are small cationic peptides that exhibit broad spectrum antimicrobial properties. The majority of beta-defensins identified in humans are predominantly expressed in the male reproductive tract and have roles in non-immunological processes such as sperm maturation and capacitation. Characterization of novel defensins in the male reproductive tract can lead to increased understanding of their dual roles in immunity and sperm maturation. METHODS: In silico rat genomic analyses were used to identify novel beta-defensins related to human defensins 118–123. RNAs isolated from male reproductive tract tissues of rat were reverse transcribed and PCR amplified using gene specific primers for defensins. PCR products were sequenced to confirm their identity. RT-PCR analysis was performed to analyze the tissue distribution, developmental expression and androgen regulation of these defensins. Recombinant defensins were tested against E. coli in a colony forming unit assay to analyze their antimicrobial activities. RESULTS: Novel beta-defensins, Defb21, Defb24, Defb27, Defb30 and Defb36 were identified in the rat male reproductive tract. Defb30 and Defb36 were the most restricted in expression, whereas the others were expressed in a variety of tissues including the female reproductive tract. Early onset of defensin expression was observed in the epididymides of 10–60 day old rats. Defb21-Defb36 expression in castrated rats was down regulated and maintained at normal levels in testosterone supplemented animals. DEFB24 and DEFB30 proteins showed potent dose and time dependent antibacterial activity. CONCLUSION: Rat Defb21, Defb24, Defb27, Defb30 and Defb36 are abundantly expressed in the male reproductive tract where they most likely protect against microbial invasion. They are developmentally regulated and androgen is required for full expression in the adult epididymis

    Identification, cloning and functional characterization of novel beta-defensins in the rat (Rattus norvegicus)

    Get PDF
    Background: beta-defensins are small cationic peptides that exhibit broad spectrum antimicrobial properties. The majority of beta-defensins identified in humans are predominantly expressed in the male reproductive tract and have roles in non-immunological processes such as sperm maturation and capacitation. Characterization of novel defensins in the male reproductive tract can lead to increased understanding of their dual roles in immunity and sperm maturation. Methods: In silico rat genomic analyses were used to identify novel beta-defensins related to human defensins 118–123. RNAs isolated from male reproductive tract tissues of rat were reverse transcribed and PCR amplified using gene specific primers for defensins. PCR products were sequenced to confirm their identity. RT-PCR analysis was performed to analyze the tissue distribution, developmental expression and androgen regulation of these defensins. Recombinant defensins were tested against E. coli in a colony forming unit assay to analyze their antimicrobial activities. Results: Novel beta-defensins, Defb21, Defb24, Defb27, Defb30 and Defb36 were identified in the rat male reproductive tract. Defb30 and Defb36 were the most restricted in expression, whereas the others were expressed in a variety of tissues including the female reproductive tract. Early onset of defensin expression was observed in the epididymides of 10–60 day old rats. Defb21- Defb36 expression in castrated rats was down regulated and maintained at normal levels in testosterone supplemented animals. DEFB24 and DEFB30 proteins showed potent dose and time dependent antibacterial activity. Conclusion: Rat Defb21, Defb24, Defb27, Defb30 and Defb36 are abundantly expressed in the male reproductive tract where they most likely protect against microbial invasion. They are developmentally regulated and androgen is required for full expression in the adult epididymis

    Identification cloning and functional characterization of novel beta-defensins in the rat (Rattus norvegicus)

    No full text
    Background beta-defensins are small cationic peptides that exhibit broad spectrum antimicrobial properties. The majority of beta-defensins identified in humans are predominantly expressed in the male reproductive tract and have roles in non-immunological processes such as sperm maturation and capacitation. Characterization of novel defensins in the male reproductive tract can lead to increased understanding of their dual roles in immunity and sperm maturation. Methods In silico rat genomic analyses were used to identify novel beta-defensins related to human defensins 118–123. RNAs isolated from male reproductive tract tissues of rat were reverse transcribed and PCR amplified using gene specific primers for defensins. PCR products were sequenced to confirm their identity. RT-PCR analysis was performed to analyze the tissue distribution developmental expression and androgen regulation of these defensins. Recombinant defensins were tested against E. coli in a colony forming unit assay to analyze their antimicrobial activities. Results Novel beta-defensins Defb21 Defb24 Defb27 Defb30 and Defb36 were identified in the rat male reproductive tract. Defb30 and Defb36 were the most restricted in expression whereas the others were expressed in a variety of tissues including the female reproductive tract. Early onset of defensin expression was observed in the epididymides of 10–60 day old rats. Defb21-Defb36 expression in castrated rats was down regulated and maintained at normal levels in testosterone supplemented animals. DEFB24 and DEFB30 proteins showed potent dose and time dependent antibacterial activity. Conclusion Rat Defb21 Defb24 Defb27 Defb30 and Defb36 are abundantly expressed in the male reproductive tract where they most likely protect against microbial invasion. They are developmentally regulated and androgen is required for full expression in the adult epididymis. Originally published Reproductive Biology and Endocrinology Vol. 4 No. 7 Feb 200

    Attenuation of myocardial injury in mice with functional deletion of the circadian rhythm gene mPer2

    No full text
    Variations in circadian rhythms are evident in the incidence of cardiovascular disease, and the risk of cardiovascular events increases when rhythms are disrupted. The suprachiasmatic nucleus is the central circadian pacemaker that regulates the daily rhythm of peripheral organs. Diurnal rhythms have more recently been shown to exist in myocardial tissue and are involved in metabolism and contractile function. Thus we sought to determine whether the functional deletion of the circadian rhythm mouse periodic gene 2 (mPer2) would protect the heart against ischemic injury. Nonreperfused myocardial infarction was induced in anesthetized, ventilated C57 (n = 17) and mPer2 mutant (mPer2-M; n = 15) mice via permanent ligation of the left anterior descending coronary artery. At 4 days post-myocardial infarction, we observed a 43% reduction of infarct area in mPer2-M mice compared with wild-type mice. This is coincident with 25% less macrophage infiltration, 43% higher capillary density, 17% increase in hypertrophy, and 15% less cardiomyocyte apoptosis in the infarct zone. Also, matrix metalloproteinase-9 was expressed in inflammatory cells in both groups, but total protein was 40% higher in wild-type mice, whereas it was not elevated in mPer2-M mice in response to injury. The functional deletion of the mPer2 gene reduces the severity of myocardial infarct injury by limiting the inflammatory response, reducing apoptosis, and inducing cardiomyocyte hypertrophy, thus preserving cardiac function. These findings collectively imply that the disruption of the circadian clock gene mPer2 is protective. Understanding the interactions between circadian rhythm genes and cardiovascular disease may provide insights into potential preventative and therapeutic strategies for susceptible populations
    corecore