1,073 research outputs found

    Surviving on Mars: test with LISA simulator

    Full text link
    We present the biological results of some experiments performed in the Padua simulators of planetary environments, named LISA, used to study the limit of bacterial life on the planet Mars. The survival of Bacillus strains for some hours in Martian environment is shortly discussed.Comment: To be published on Highlights of Astronomy, Volume 15 XXVIIth IAU General Assembly, August 2009 Ian F Corbett, ed. 2 pages, 1 figur

    Phenotypic analysis of milk coagulation properties and mineral content of Pinzgauer cattle breed

    Get PDF
    Abstract. This study aimed to characterize milk coagulation properties (rennet coagulation time, curd-firming time and curd firmness 30min after rennet addition to milk) and major mineral contents (Ca, Mg, P, K and Na) in Pinzgauer dual-purpose cattle breed. The edited dataset consisted of 7763 milk observations from 851 cows reared in 60 herds in the Alpine area of Bolzano province (Italy). Data were analysed through a linear mixed model which included stage of lactation, parity and their interaction as fixed effects, and cow and herd test date as random effects. Rennet coagulation time, curd-firming time and curd firmness 30min after rennet addition to milk averaged 22.66min, 5.53min and 16.79mm, respectively. The most abundant minerals were P (1495mgkg−1) and Ca (1344mgkg−1), and the least abundant Mg (141mgkg−1). Compared to their older contemporaries, early-lactating younger animals yielded milk that was more favourable for cheese production (i.e. with shorter coagulation time and stronger curd firmness). Mineral contents were lower in milk of primiparous than multiparous cows, except for Na. Moreover, Ca, Mg, P and Na contents decreased from parturition to peak of lactation and increased thereafter, except for K, which exhibited an opposite trend. Our results showed that Pinzgauer breed produced milk with better coagulation properties and mineral content, from a technological point of view, in first than later parities and in early than late lactation. The characterization of milk coagulation properties and mineral content in autochthonous breeds is important to increase their value and marketability of their products.</p

    Effectiveness of mid-infrared spectroscopy to predict the color of bovine milk and the relationship between milk color and traditional milk quality traits

    Get PDF
    The color of milk affects the subsequent color features of the resulting dairy products; milk color is also related to milk fat concentration. The objective of the present study was to quantify the ability of mid-infrared spectroscopy (MIRS) to predict color-related traits in milk samples and to estimate the correlations between these color-related characteristics and traditional milk quality traits. Mid-infrared spectral data were available on 601 milk samples from 529 cows, all of which had corresponding gold standard milk color measures determined using a Chroma Meter (Konica Minolta Sensing Europe, Nieuwegein, the Netherlands); milk color was expressed using the CIELAB uniform color space. Separate prediction equations were developed for each of the 3 color parameters (L* = lightness, a* = greenness, b* = yellowness) using partial least squares regression. Accuracy of prediction was determined using both cross validation on a calibration data set (n = 422 to 457 samples) and external validation on a data set of 144 to 152 samples. Moderate accuracy of prediction was achieved for the b* index (coefficient of correlation for external validation = 0.72), although poor predictive ability was obtained for both a* and L* indices (coefficient of correlation for external validation of 0.30 and 0.55, respectively). The linear regression coefficient of the gold standard values on the respective MIRS-predicted values of a*, L*, and b* was 0.81, 0.88, and 0.96, respectively; only the regression coefficient on L* was different from 1. The mean bias of prediction (i.e., the average difference between the MIRS-predicted values and gold standard values in external validation) was not different from zero for any of 3 parameters evaluated. A moderate correlation (0.56) existed between the MIRS-predicted L* and b* indices, both of which were weakly correlated with the a* index. Milk fat, protein, and casein were moderately correlated with both the gold standard and MIRS-predicted values for b*. Results from the present study indicate that MIRS data provides an efficient, low-cost screening method to determine the b* color of milk at a population level

    Processing characteristics of dairy cow milk are moderately heritable.

    Get PDF
    Milk processing attributes represent a group of milk quality traits that are important to the dairy industry to inform product portfolio. However, because of the resources required to routinely measure such quality traits, precise genetic parameter estimates from a large population of animals are lacking for these traits. Milk processing characteristics considered in the present study—rennet coagulation time, curd-firming time, curd firmness at 30 and 60 min after rennet addition, heat coagulation time, casein micelle size, and milk pH—were all estimated using mid-infrared spectroscopy prediction equations. Variance components for these traits were estimated using 136,807 test-day records from 5 to 305 d in milk (DIM) from 9,824 cows using random regressions to model the additive genetic and within-lactation permanent environmental variances. Heritability estimates ranged from 0.18 ± 0.01 (26 DIM) to 0.38 ± 0.02 (180 DIM) for rennet coagulation time; from 0.26 ± 0.02 (5 DIM) to 0.57 ± 0.02 (174 DIM) for curd-firming time; from 0.16 ± 0.01 (30 DIM) to 0.56 ± 0.02 (271 DIM) for curd firmness at 30 min; from 0.13 ± 0.01 (30 DIM) to 0.48 ± 0.02 (271 DIM) for curd firmness at 60 min; from 0.08 ± 0.01 (17 DIM) to 0.24 ± 0.01 (180 DIM) for heat coagulation time; from 0.23 ± 0.02 (30 DIM) to 0.43 ± 0.02 (261 DIM) for casein micelle size; and from 0.20 ± 0.01 (30 DIM) to 0.36 ± 0.02 (151 DIM) for milk pH. Within-trait genetic correlations across DIM weakened as the number of days between compared intervals increased but were mostly >0.4 except between the peripheries of the lactation. Eigenvalues and associated eigenfunctions of the additive genetic covariance matrix for all traits revealed that at least the 80% of the genetic variation among animals in lactation profiles was associated with the height of the lactation profile. Curd-firming time and curd firmness at 30 min were weakly to moderately genetically correlated with milk yield (from 0.33 ± 0.05 to 0.59 ± 0.05 for curd-firming time, and from −0.62 ± 0.03 to −0.21 ± 0.06 for curd firmness at 30 min). Milk protein concentration was strongly genetically correlated with curd firmness at 30 min (0.84 ± 0.02 to 0.94 ± 0.01) but only weakly genetically correlated with milk heat coagulation time (−0.27 ± 0.07 to 0.19 ± 0.06). Results from the present study indicate the existence of exploitable genetic variation for milk processing characteristics. Because of possible indirect deterioration in milk processing characteristics due to selection for greater milk yield, emphasis on milk processing characteristics is advised

    Mid-infrared spectroscopy for large-scale phenotyping of bovine colostrum gross composition and immunoglobulin concentration

    Get PDF
    Immunoglobulin G is the fundamental antibody for acquisition of passive transfer of immunity in ruminant newborns. Colostrum, in fact, must be administered as soon as possible after birth to ensure a successful transfer of IgG from the dam to the calf. Assessment of colostrum Ig concentration and gross composition via gold standards is expensive, time consuming, and hardly implementable for large-scale investigations. Therefore, in the present study we evaluated the predictive ability of mid-infrared spectroscopy (MIRS) as an indirect determination method. A total of 714 colostrum samples collected within 6 h from parturition from Italian Holstein cows, 30% primiparous and 70% pluriparous, were scanned using a benchtop spectrometer after dilution in pure water. The prediction models were developed by correlating spectral information with the reference measurements: IgG concentration (93.54 ± 33.87 g/L), total Ig concentrations (102.82 ± 35.04 g/L), and content of protein (14.71 ± 3.51%), fat (4.61 ± 3.04%), and lactose (2.36 ± 0.51 mg/100 mg). We found a good to excellent performance in prediction of colostrum IgG concentration and traditional composition traits in cross-validation (R2CV ≥ 0.92) and a promising and good predictive ability in external validation with R2V equal to 0.84, 0.89, and 0.74 for IgG, protein, and fat, respectively. In the case of IgG and protein content, for example, the coefficient of determination in external validation was greater than 0.84. The other Ig fractions, A and M, presented insufficient prediction accuracy likely due to their extremely low concentration compared with IgG (4.56 and 5.06 g/L vs. 93.54 g/L). The discriminant ability of MIRS-predicted IgG and protein content was outstanding when trying to classify samples according to the quality level (i.e., low vs. high concentration of IgG). In particular, the cut-off that better discriminate low- from high-quality colostrum was 75.40 g/L in the case of the MIRS-predicted IgG and 13.32% for the MIRS-predicted protein content. Therefore, MIRS is proposed as a rapid and cheap tool for large-scale punctual IgG, protein, and lactose quantification and for the screening of low-quality samples. From a practical perspective, there is the possibility to install colostrum models in the MIRS benchtop machineries already present in laboratories in charge of official milk testing. Colostrum phenotypes collected on an individual basis will be useful to breeders for the definition of specific selection strategies and to farmers for management scopes. Finally, our findings may be relevant for other stakeholders, given the fact that colostrum is an emerging ingredient for the animal and human food and pharmaceutical industry

    Growth abnormalities of fetuses and infants

    Get PDF
    The objective of this special issue is to address recent research trends and developments about the advancements of image processing and vision in healthcare. A substantial number of papers were submitted, and after a thorough peer review process, some of these were selected to be included in this special issue. Growth abnormalities (either growth restriction or large for gestational age) during perinatal and postnatal life are a hot topic issue, since they are often linked to alteration of uterine environment caused by placental insufficiency, maternal metabolic syndrome, and in general under- or overnutrition of the fetus. These fetal abnormalities account for the leading causes of perinatal morbidity and mortality. Moreover, under the hypothesis of developmental origin of adult diseases, they bear consequences in later life, programming the infant physiology for a higher risk of noncommunicable diseases, cardiovascular adult diseases, and neurodevelopment delay. Low birth weight, caused either by preterm birth and/or by intrauterine growth restriction, is recently known to be associated with increased rates of cardiovascular disease and noninsulin dependent diabetes in adult life. The “developmental origins of adult disease” hypothesis, often called “the Barker hypothesis,” proposes that these diseases originate through adaptations of the fetus when it is undernourished. These adaptations may be cardiovascular, metabolic, or endocrine and they may permanently change the structure and function of the body, increasing coronary heart disease risk factors, such as hypertension, type 2 diabetes mellitus, insulin resistance, and hyperlipidaemia. This hypothesis originally involved from observation by Barker and colleagues that the regions in England with the highest rates of infant mortality in the early 20th century also had the highest rates of mortality from coronary heart disease decades later. As the most commonly registered cause of infant death at the start of 20th century was low birth weight, these observations led to the hypothesis that low birth weight babies who survived infancy and childhood might be at increased risk of coronary heart disease in later life. There is an increased evidence of the link between intrauterine and perinatal alterations and adult diseases. Although the main focus so far has been the timing of delivery and follow-up, the study of the pathophysiology and of possible recovery is of paramount importance and needs the contributions of physicians from several fields, biologists, bioinformaticians, and engineers
    corecore