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ABSTRACT

Milk processing attributes represent a group of milk 
quality traits that are important to the dairy industry 
to inform product portfolio. However, because of the 
resources required to routinely measure such quality 
traits, precise genetic parameter estimates from a large 
population of animals are lacking for these traits. Milk 
processing characteristics considered in the present 
study—rennet coagulation time, curd-firming time, 
curd firmness at 30 and 60 min after rennet addition, 
heat coagulation time, casein micelle size, and milk 
pH—were all estimated using mid-infrared spectrosco-
py prediction equations. Variance components for these 
traits were estimated using 136,807 test-day records 
from 5 to 305 d in milk (DIM) from 9,824 cows using 
random regressions to model the additive genetic and 
within-lactation permanent environmental variances. 
Heritability estimates ranged from 0.18 ± 0.01 (26 
DIM) to 0.38 ± 0.02 (180 DIM) for rennet coagulation 
time; from 0.26 ± 0.02 (5 DIM) to 0.57 ± 0.02 (174 
DIM) for curd-firming time; from 0.16 ± 0.01 (30 DIM) 
to 0.56 ± 0.02 (271 DIM) for curd firmness at 30 min; 
from 0.13 ± 0.01 (30 DIM) to 0.48 ± 0.02 (271 DIM) 
for curd firmness at 60 min; from 0.08 ± 0.01 (17 DIM) 
to 0.24 ± 0.01 (180 DIM) for heat coagulation time; 
from 0.23 ± 0.02 (30 DIM) to 0.43 ± 0.02 (261 DIM) 
for casein micelle size; and from 0.20 ± 0.01 (30 DIM) 
to 0.36 ± 0.02 (151 DIM) for milk pH. Within-trait 
genetic correlations across DIM weakened as the num-
ber of days between compared intervals increased but 
were mostly >0.4 except between the peripheries of the 
lactation. Eigenvalues and associated eigenfunctions 
of the additive genetic covariance matrix for all traits 
revealed that at least the 80% of the genetic variation 
among animals in lactation profiles was associated with 
the height of the lactation profile. Curd-firming time 
and curd firmness at 30 min were weakly to moder-

ately genetically correlated with milk yield (from 0.33 
± 0.05 to 0.59 ± 0.05 for curd-firming time, and from 
−0.62 ± 0.03 to −0.21 ± 0.06 for curd firmness at 30 
min). Milk protein concentration was strongly geneti-
cally correlated with curd firmness at 30 min (0.84 ± 
0.02 to 0.94 ± 0.01) but only weakly genetically cor-
related with milk heat coagulation time (−0.27 ± 0.07 
to 0.19 ± 0.06). Results from the present study indicate 
the existence of exploitable genetic variation for milk 
processing characteristics. Because of possible indirect 
deterioration in milk processing characteristics due to 
selection for greater milk yield, emphasis on milk pro-
cessing characteristics is advised.
Key words: milk coagulation, milk quality, milk 
technological, spectrometry, random regression

INTRODUCTION

The importance of milk composition and udder 
health in the production of dairy products is generally 
well accepted (Williams, 2003; Murphy et al., 2016). 
Such importance underpins the inclusion of both milk 
composition and udder health in several dairy cow 
breeding objectives globally (Miglior et al., 2005). 
However, milk processability, which dictates the poten-
tial of transforming milk into different dairy products 
such as cheese and milk powder, is also an important 
characteristic of milk composition. Despite this, milk 
processability is not explicitly considered in national 
dairy cow breeding objectives.

Indicators of milk processability are commonly re-
ferred to as milk coagulation properties and these in-
clude rennet coagulation time (RCT, min), curd-firm-
ing time (k20, min), curd firmness 30 (a30, mm) and 60 
(a60, mm) min after rennet addition, and heat coagula-
tion time (HCT, min), casein micelle size (CMS, nm), 
and milk pH. Several factors are known to contribute 
to variability in milk processing characteristics such as 
cow breed (De Marchi et al., 2007; Poulsen et al., 2013; 
Chen et al., 2016), stage of lactation (Ikonen et al., 
2004; Barłowska et al., 2014), parity number (Ikonen et 
al., 1999; Tyrisevä et al., 2004), and the diet ingested 
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(Reid et al., 2015). The existence of genetic variation 
in milk coagulation properties has been documented in 
several Holstein-Friesian populations, including popula-
tions in Italy (1,042 cows, Cassandro et al., 2008), Esto-
nia (4,191 cows, Vallas et al., 2010; 5,216 cows, Pretto 
et al., 2014), Denmark (357 cows; Poulsen et al., 2015), 
and Finland (399 cows, Tyrisevä et al., 2004). These 
studies, however, have been limited in size, contributing 
to large associated standard errors of the estimated (co)
variance components, and they have estimated genetic 
parameters of milk coagulation properties using repeat-
ability animal models. The exceptions to the latter are 
Vallas et al. (2010) and Pretto et al. (2014), which used 
random regression animal models. To our knowledge, 
no study has attempted to quantify the existence of 
genetic variation in either HCT or CMS in dairy cows.

Large-scale recording of milk processing traits is of-
ten hampered by the associated resources necessary to 
undertake the reference methodologies. This not only 
limits the data set sizes to estimate precise genetic 
parameters, but also precludes the implementation of 
breeding strategies to improve these characteristics 
directly. Milk mid-infrared spectroscopy has been pro-
posed as a phenotyping tool for a multitude of animal 
characteristics (Bastin et al., 2016; McParland and 
Berry, 2016) and milk quality traits (De Marchi et al., 
2014), including milk processing attributes (Visentin et 
al., 2015). One of the main advantages of mid-infrared 
spectroscopy is that, once developed, new prediction 
models can be applied to historical spectral data for the 
prediction of novel traits at no additional cost.

Therefore, the objective of the present study was 
to quantify the genetic variation in milk processing 
characteristics and their correlations with milk-related 
performance traits using random regression models fit-
ted across lactation. Results of the present study will 
provide greater and more precise knowledge of the ex-
tent of genetic variability that exists in milk processing 
characteristics and how this changes across lactation.

MATERIALS AND METHODS

Data

Milk samples used in the present study originated 
from 76 Irish herds collected between January 2013 and 
December 2015, inclusive; 174,062 milk samples from 
10,394 dairy cows were collected.

Sixty-nine of the aforementioned 76 farms were com-
mercial herds located in the Munster region of Ireland; 
the average herd size was 126 cows. Animals in the 
commercial herds were milked twice a day, at ap-
proximately 0700 h (a.m.) and again at approximately 
1500 h (p.m.), and a combined a.m.+p.m. individual 

milk sample was sporadically collected and sent to the 
laboratory of Teagasc Animal and Grassland Research 
and Innovation Center (Moorepark, Fermoy, Co. Cork, 
Ireland) for mid-infrared spectroscopy analysis. On av-
erage, 1,249 samples were analyzed each month. Milk 
yield of the commercial farms represented the entire 
daily milk produced during the test-day recording. The 
average number of collected milk samples per cow was 
5.15, and 14,873 lactation records were available.

The remaining 7 farms were operated by Teagasc 
Animal and Grassland Research and Innovation Cen-
ter (Moorepark, Fermoy, Co. Cork). In these research 
herds, 1,661 dairy cows were participating in various 
experimental treatments based on different feeding 
strategies and management practices, including various 
stocking rates, calving periods, and lengths of grazing 
period. All cows were fed a basal diet of grazed pasture, 
but at times were offered a quantity of concentrates 
according to the experimental treatment. Animals were 
milked twice a day (a.m. and p.m.) and milk yield was 
recorded at each milking session. Milk yield of the 2 
daily milking sessions was summed to obtain daily milk 
yield. Individual milk samples were taken separately, 
once weekly, on consecutive p.m. and a.m. milkings. 
The average number of milk samples collected per cow 
was 78, and the total number of lactations available 
was 2,956.

Spectra information and milk chemical composition 
(i.e., concentrations of protein, casein, fat, lactose, 
total solids, and urea) of all milk samples were gener-
ated using the same MilkoScan FT6000 (Foss Electric 
A/S, Hillerød, Denmark) in the laboratory of Teagasc 
Animal and Grassland Research and Innovation Center 
(Moorepark, Fermoy, Co. Cork, Ireland) within a week 
of sample collection. The resulting milk spectra, con-
taining 1,060 transmittance data points in the region 
between 900 and 5,000 cm−1, were stored. Somatic cell 
count of all samples was determined using a Fossomatic 
(Foss Electric A/S).

Prediction of Milk Processing Phenotype 

Between the years 2013 and 2014, a calibration data 
set was generated from individual bovine milk samples 
collected from the 7 Irish research herds as described in 
detail by Visentin et al. (2015); data from cows milking 
in these 7 research farms also contributed to the larger 
data set in the present study. Full details on the de-
velopment of the mid-infrared spectroscopy prediction 
models for milk technological traits, including RCT, k20, 
a30, a60, HCT, CMS, and pH are reported by Visentin et 
al. (2015). Rennet coagulation time represents the time 
required to induce milk coagulation after rennet addi-
tion, k20 is the time between the gel development and 
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the achievement of a width of 20 mm in the graph, and 
a30 and a60 are the widths of the graph after 30 and 60 
min from rennet addition, respectively. Milk HCT was 
the time taken for milk within a hot oil bath at 140°C 
at an oscillating speed of 8 rpm to start to flocculate. 
Casein micelle size represents the average diameter of 
casein micelles of a milk sample.

The developed prediction models (Visentin et al., 
2015) were applied to the larger spectral data set of the 
current study to obtain the predicted milk processing 
phenotypes. Briefly, spectral data of the present study 
were converted from transmittance to absorbance by 
taking the log10 of the reciprocal of the transmittance, 
and spectral wavelengths with low signal-to-noise ratio 
(1,580–1,710 cm−1 and 2,990–3,690 cm−1) were discard-
ed. Principal component analysis (PROC PRINCOMP; 
SAS Institute Inc., Cary, NC) was performed on the 
resulting edited spectra and the Mahalanobis distance 
from the centroid of the cluster of the samples included 
in the calibration data set was calculated. Spectra with 
a Mahalanobis distance greater than the 97.5% per-
centile of a χ2 distribution with 4 (i.e., lowest number 
of principal component whose eigenvalues was greater 
than 1) degrees of freedom were considered outliers and 
discarded. Following these edits, 157,192 spectra from 
10,112 dairy cows remained, and the prediction models 
were applied to these spectra to generate predicted val-
ues for RCT, k20, a30, a60, HCT, CMS, and pH.

Data Editing

Only records between 5 and 305 DIM from parities 
≤10 were retained. Obvious data errors for predicted 
RCT, k20, a30, a60, HCT, CMS, and pH and the milk 
production traits (i.e., milk yield, SCC, and concentra-
tions of protein, fat, casein, lactose, total solids, and 
urea) were discarded. Somatic cell score (SCS) was 
calculated as log10(SCC/1,000). Subsequently, records 
greater than 3 standard deviations from the mean of 
each trait were discarded. Cow breed composition was 
defined as the proportion of Holstein, Friesian, Jersey, 
Montbéliarde, Norwegian Red, and “other.” Two con-
temporary groups were generated: (1) experimental 
treatment-test-date for milk samples from cows in the 
research herds; and (2) herd-test-date for milk samples 
from cows in the commercial herds. Only contemporary 
groups with at least 10 observations were retained. 
Following all these edits, 136,807 milk samples from 
16,543 lactations from 9,824 dairy cows were available 
for further analyses.

Coefficients of general heterosis and recombination 
loss were calculated for each cow as described by Van-
Raden and Sanders (2003):
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where sirei and dami are the proportion of genes of the 
breed i in the sire and the dam, respectively.

Data Analysis

Variance components for milk processing character-
istics, milk yield, and milk composition were estimated 
using random regression models fitted across lactation 
in ASREML (Gilmour et al., 2011). The pedigree of all 
animals was traced back at least 4 generations (where 
available), and comprised 41,232 animals. The data 
were divided into 10 groups based on days postcalving 
as 5 to 30 DIM, 31 to 60 DIM, 61 to 90 DIM, …, 241 
to 270 DIM, and 271 to 305 DIM. Within group, the 
estimated residual variance was assumed homogeneous, 
whereas between groups, the estimated residual vari-
ance could be heterogeneous. No residual covariance 
was assumed to exist among groups. The fitted model 
was
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where yijklmopnq is RCT, k20, a30, a60, HCT, CMS, pH, 
test-day milk yield, protein %, fat %, casein %, lactose 
%, urea (mg/dL), and SCS for animal p; Cont_groupi 
is the fixed effect of the ith contemporary group (5,709 
classes); Sessionj is the fixed effect of the jth class of 
milking session (3 classes: a.m., p.m., or combined 
a.m.+p.m.); Breedk is the fixed effect of the kth propor-
tion of the kth breed (5 breed proportions: Friesian, 
Jersey, Montbéliarde, Norwegian Red, and “other,” all 
treated separately as continuous variables); Hetl is the 
fixed effect of the lth class of coefficient of heterosis (12 
classes: 0, >0 and ≤0.1, …, >0.9 and <1, 1); Recm is 
the fixed effect of the mth class of coefficient of recom-
bination loss (12 classes: 0, >0 and ≤0.1, …, >0.9 and 
<1, 1); Paro is the fixed effect of the oth class of parity 
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(5 classes: 1, 2, 3, 4, ≥5); bn is the nth-order Legendre 
polynomial of DIM; Cowp is the random effect for the 
additive genetic effect of the pth animal; PEwithinp is 
the random effect for the within-lactation permanent 
environmental effect of the pth animal; PEacrossp is 
the random effect for the across-lactation permanent 
environmental effect of the pth animal; and eijklmopnq is 
the residual term.

The most parsimonious order of the fixed Legendre 
polynomial was evaluated based on visual inspection 
of the resulting lactation profile for the different poly-
nomial orders for each trait studied. In all instances, 
a third-order Legendre polynomial was the most ap-
propriate, with minimal difference detected from the 
lactation profiles generated from higher-order polyno-
mials. To select the most parsimonious order for the 
random Legendre polynomial, different combinations 
of covariance functions were tested. The first model 
included a first-order Legendre polynomial fitted only 
to the additive genetic effect. The second model con-
sidered a first-order Legendre polynomial fitted also to 
the within-lactation permanent environmental effect. 
In the subsequent models, the polynomial order was 
increased incrementally by one unit with the order of 
the additive genetic effect being increased first, followed 
then by the within-lactation permanent environmental 
effect. The criteria set to select the most parsimonious 
order of the random Legendre polynomials were (1) 
the log-likelihood ratio test of 2 nested models (Wilks, 
1938), (2) the Akaike information criterion, and (3) the 
eigenvalues of the additive genetic (co)variance matrix 
to quantify the contribution of the highest polynomial 
order to the entire genetic variance. A third-order Leg-
endre polynomial on the additive genetic effect and on 
the within-lactation permanent environmental effect 
minimized the Akaike information criterion and maxi-
mized model log-likelihoods.

Genetic covariance function coefficients from the ran-
dom regression analyses were calculated as

 δ2 = ΦKΦ′, 

where δ2 is the 301 × 301 (co)variance matrix for the 
predicted milk technological trait, milk yield and milk 
chemical composition trait; Φ is the 301 × n matrix 
of Legendre polynomial of DIM regression coefficients; 
and K is the n × n estimated additive genetic (or within 
lactation permanent environmental effect) (co)variance 
matrix of the random polynomial coefficient. Standard 
errors of the heritability estimates were calculated us-
ing a Taylor series expansion as outlined in Fischer et 
al. (2004).

Genetic correlations between milk processing traits, 
milk yield, and milk chemical composition were cal-
culated using a series of bivariate random regression 
models in ASREML (Gilmour et al., 2011) using the 
statistical model previously described for the univari-
ate analyses. Residual groups were as defined in the 
univariate analyses, but residual covariances between 
traits within residual group were estimated. To achieve 
model convergence, the polynomial order of the random 
terms was reduced to a quadratic polynomial. Standard 
errors of the genetic correlations were estimated as out-
lined in Falconer and MacKay (1996).

For each studied trait, eigenvalues and eigenvectors 
were calculated from the additive genetic covariance 
matrix using PROC IML (SAS Institute Inc.), and 
eigenfunctions were calculated as the product of the 
eigenvectors and the Legendre polynomial coefficients 
matrix.

In a supplementary analysis, the heritability and 
repeatability of milk yield and each of the milk pro-
cessing and composition traits were calculated using 
a univariate repeatability animal linear mixed model. 
Fixed effects fitted were the same as in the model pre-
viously described, but replacing the sets of fixed-effects 
Legendre polynomial coefficients with stage of lactation 
(10 classes: 5–30 DIM, 31–60 DIM, …, 241–270 DIM, 
and 271–305 DIM) as per Visentin et al. (2017).

The effect of genetic selection for milk processability 
on milk yield, and vice versa, was undertaken using 
selection index theory. An economic weight of 1 was ap-
plied to milk yield, which was the only goal trait. (Co)
variance components used in the selection index were 
those estimated in the present study averaged across all 
DIM from the bivariate random regression models; phe-
notypic correlations were those reported by Visentin 
et al. (2017). A restriction selection index was used to 
quantify the weighting required on the milk processing 
trait(s) of interest to halt any indirect deterioration due 
to selection on milk yield. The relative emphasis on an 
individual trait i was calculated as in Berry (2015):

 Emphasis  i
i i

j

n
j j

a

a
=

×

×
=∑
σ

σ
1

, 

where ai and aj are the economic weight for the traits i 
and j, respectively, and σi and σj are the genetic stan-
dard deviations for traits i and j, respectively. Selection 
index theory was also used to quantify the number of 
progeny or number of lactations per cow required to 
achieve a given level of reliability for a milk processing 
trait of interest.



Journal of Dairy Science Vol. 100 No. 8, 2017

GENETIC VARIATION OF MILK PROCESSING TRAITS 5

The proportion of genetic variation (i.e., coefficient 
of genetic variation, CVG) in each milk processing trait 
independent of genetic merit for milk protein percent-
age was estimated as

 CVG
G i prt

i

i=
× −( )r

%
σ

µ

2 21 ,
, 

where σGi
2  is the estimated additive genetic variance of 

trait i in the present study, ri prt,
2  is the squared genetic 

correlation between trait i and milk protein percentage 
estimated in the present study, and μi is the mean of 
trait i in the present study.

RESULTS

Fewer records were available at the start and end 
of lactation (8,329 and 3,590 observations between 5 
and 30 DIM and 271–305 DIM, respectively) relative 
to other stages, in which the number of records ranged 
between 11,002 (241–270 DIM) and 17,954 (91–120 
DIM). The descriptive statistics, heritability, and re-
peatability (estimated using the repeatability animal 
model) of milk processing traits, milk yield, and milk 
composition are given in Table 1. The coefficient of 
genetic variation for the milk technological traits varied 
from 3.08% (a60) to 11.51% (k20), with the exception of 
CMS (2.06%) and milk pH (0.30%; Table 1). A large 
coefficient of genetic variation (10.79%) was evident 
for milk yield, whereas for milk composition, the coef-
ficient of genetic variation ranged from 1.89% (lactose 
concentration) to 7.83% (fat concentration; Table 1). 
The heritability estimates for milk processing traits 
calculated using the repeatability animal model ranged 

from 0.16 ± 0.01 (HCT) to 0.43 ± 0.02 (k20), and the 
estimated heritability for the milk composition traits 
ranged from 0.05 ± 0.01 (SCS) to 0.46 ± 0.02 (protein 
and casein concentrations; Table 1).

Genetic Variation and Heritability Estimates  
from the Random Regression Models

The genetic standard deviation across lactation of all 
milk coagulation properties and CMS followed similar 
trends (Figure 1), reducing from the beginning of lac-
tation to 31–60 DIM, and increasing thereafter. The 
genetic standard deviation ranged from 1.57 ± 0.09 
min (43 DIM) to 2.24 ± 0.29 min (305 DIM) for RCT, 
from 0.58 ± 0.01 min (34 DIM) to 0.78 ± 0.03 min 
(305 DIM) for k20, from 1.74 ± 0.11 mm (44 DIM) to 
4.12 ± 0.62 mm (305 DIM) for a30, and from 0.81 ± 
0.03 mm (53 DIM) to 1.62 ± 0.12 mm (305 DIM) for 
a60 (Figure 1). The genetic standard deviation for HCT 
decreased immediately after the onset of lactation (0.44 
± 0.02 min; 21 DIM), but increased thereafter until 210 
DIM (0.96 ± 0.03 min), after which it decreased again 
(Figure 1). The genetic standard deviation for CMS 
was least at 45 DIM (3.15 ± 0.36 nm), but increased 
thereafter until the end of lactation (5.07 ± 1.24 nm; 
Figure 1). The genetic standard deviation of milk pH 
was small, ranging from 0.022 ± 0.001 at 56 DIM to 
0.028 ± 0.004 at 5 DIM (Figure 1).

In general, heritability estimates for milk processing 
characteristics were the lowest in very early lactation 
(5–30 DIM), concurrent also with the greatest esti-
mates of residual variances. The most heritable milk 
coagulation properties trait was k20 (0.26 ± 0.02 at 5 
DIM to 0.57 ± 0.02 at 174 DIM), followed by a30 (0.16 
± 0.01 at 30 DIM to 0.56 ± 0.02 at 271 DIM), a60 (0.13 
± 0.01 at 30 DIM to 0.48 ± 0.02 at 271 DIM), and 

Table 1. Number of samples (n), mean, phenotypic standard deviation (SD), heritability, repeatability (t), and coefficient of genetic variation 
(CV) for milk processing traits, milk yield, and milk composition post-editing

Trait1 n Mean SD h2 (SE) t (SE) CV

RCT, min 136,102 20.37 6.22 0.28 (0.01) 0.36 (0.01) 8.10
k20, min 136,340 5.30 1.56 0.43 (0.02) 0.53 (0.01) 11.51
a30, mm 126,799 29.72 7.16 0.36 (0.02) 0.45 (0.01) 7.20
a60, mm 135,605 31.46 3.88 0.27 (0.01) 0.34 (0.01) 3.08
HCT, min 134,185 6.79 4.40 0.16 (0.01) 0.29 (0.01) 10.90
CMS, nm 136,165 169.57 12.41 0.31 (0.02) 0.43 (0.01) 2.06
pH, units 136,126 6.69 0.08 0.27 (0.01) 0.38 (0.01) 0.30
Milk yield, kg/d 117,279 20.87 6.35 0.18 (0.02) 0.52 (0.01) 10.79
Protein, % 128,561 3.71 0.39 0.46 (0.02) 0.59 (0.01) 4.58
Fat, % 128,647 4.60 1.07 0.29 (0.01) 0.31 (0.01) 7.83
Casein, % 128,615 2.81 0.33 0.46 (0.02) 0.59 (0.01) 4.98
Lactose, % 128,510 4.76 0.21 0.36 (0.02) 0.49 (0.01) 1.89
Urea, mg/dL 127,996 30.60 12.53 0.14 (0.01) 0.25 (0.01) 6.37
SCS, units 76,595 1.79 0.49 0.05 (0.01) 0.44 (0.01) 5.03
1RCT = rennet coagulation time; k20 = curd-firming time; a30 = curd firmness at 30 min; a60 = curd firmness at 60 min; HCT = heat coagula-
tion time; CMS = casein micelle size; SCS = log10(SCC).
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RCT (0.18 ± 0.01 at 26 DIM to 0.38 ± 0.02 at 180 
DIM; Figure 2). Heritability estimates for the remain-
ing processing attributes ranged from 0.08 ± 0.01 (17 
DIM) to 0.24 ± 0.01 (180 DIM) for HCT, 0.23 ± 0.02 
(30 DIM) to 0.43 ± 0.02 (261 DIM) for CMS, and 0.20 
± 0.01 (30 DIM) to 0.36 ± 0.02 (151 DIM) for pH 
(Figure 2). This therefore suggests that 8 to 56% of the 
adjusted phenotypic variability in the milk processing 
characteristics investigated in the present study were 
due to differences in additive genetic effects.

Eigenvalues and Eigenfunctions

The eigenfunction associated with the largest eigen-
value was almost linear but positive across all DIM 
for all milk processing characteristics (Figure 3), as 
well as for both milk yield and milk composition. In all 
instances, the eigenfunction associated with the second 
largest eigenvalue changed from negative to positive 
after mid-lactation (163–215 DIM, with the exception 
of milk pH where the change in sign occurred at 132 

DIM). For all the studied traits, including milk yield 
and milk composition, by far the greatest proportion 
of the genetic variance was explained by the intercept 
term; the genetic variance explained by the largest 
eigenvalue varied from 82% (a60) to 92% (HCT). The 
proportion of genetic variation explained by the small-
est eigenvalue varied from 1% (HCT, CMS, and pH) to 
2% (RCT, k20, a30, and a60).

Within-Trait Genetic Correlations

In all instances, within trait genetic correlations weak-
ened as the time between compared DIM lengthened 
but approached unity between adjacent DIM; nonethe-
less, all within-trait pairwise DIM genetic correlations 
were positive. Within-trait genetic correlations reached 
a minimum of 0.12 ± 0.01 for RCT, a minimum of 
0.14 ± 0.02 for k20, a minimum of 0.13 ± 0.03 for a30, 

Figure 1. Genetic standard deviation (SE in parentheses) for (A) 
rennet coagulation time (□, min; 0.08 to 0.29), curd-firming time (♦, 
min; 0.01 to 0.03), curd firmness (mm) at 30 min (∆, mm; 0.10 to 
0.62), and curd firmness at 60 min (●, mm; 0.02 to 0.12), and (B) heat 
coagulation time (□, min; 0.01 to 0.08), casein micelle size (♦, nm; 
0.35 to 1.24), and pH (∆, unitless; 0.001 to 0.004).

Figure 2. Heritability estimates for (A) rennet coagulation time 
(□, min), curd-firming time (♦, min), curd firmness at 30 min (∆, 
mm), and curd firmness at 60 min (●, mm), and (B) heat coagula-
tion time (□, min), casein micelle size (♦, nm), and pH (∆, unitless). 
Standard error for the heritability estimates ranged between 0.01 and 
0.03.
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Figure 3. Eigenfunctions (y-axis, unitless) associated with the largest (□), first-middle (♦), second-middle (∆), and smallest (●) eigenvalue 
for (A) rennet coagulation time; (B) curd-firming time; (C) curd firmness at 30 min; (D) curd firmness at 60 min; (E) heat coagulation time; 
(F) casein micelle size; and (G) pH.
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a minimum of 0.04 ± 0.01 for a60, a minimum of 0.26 
± 0.01 for HCT, a minimum of 0.31 ± 0.01 for CMS, 
and a minimum of 0.13 ± 0.02 for milk pH (Figure 
4). Within-trait genetic correlation for milk composi-
tion traits had a minimum of 0.11 ± 0.02 and 0.13 
± 0.02 for protein and fat concentrations, respectively 
(Supplemental Figure S1; https://doi.org/10.3168/
jds.2017-12642).

Genetic Correlations Among Traits

The genetic correlations among traits averaged 
across all DIM are reported in Table 2 and those among 
traits for each DIM are in Figures 5 and 6. Genetic cor-
relations among the milk coagulation properties were 
generally strong, ranging from 0.69 ± 0.01 (160 DIM) 
to 0.85 ± 0.02 (5 DIM) between RCT and k20, and 
from −0.81 ± 0.03 (5 DIM) to −0.61 ± 0.02 (149 DIM) 
between RCT and a30 (Figure 5). Milk HCT and CMS 
were weakly correlated with all the other milk process-
ing traits (Figure 5), whereas milk pH was strongly 
correlated only with RCT (0.73 ± 0.04 at 5 DIM to 
0.77 ± 0.03 at 305 DIM; data not shown). The correla-
tions between milk yield and the milk processing traits 
were weak (from 0.07 ± 0.10 at 305 DIM to 0.21 ± 0.04 
at 209 DIM with milk pH; Figure 6) to moderate (from 
0.33 ± 0.05 at 5 DIM to 0.59 ± 0.04 at 303 DIM with 
k20, and from −0.62 ± 0.03 at 283 DIM to −0.20 ± 0.06 
at 5 DIM with a30). Milk protein concentration, similar 
to casein concentration, was strongly correlated with 
both k20 (−0.84 ± 0.02 at 5 DIM to −0.93 ± 0.01 at 305 
DIM; Figure 6) and a30 (0.84 ± 0.02 at 21 DIM to 0.94 
± 0.01 at 305 DIM; Figure 6), but weakly correlated 
with HCT (0.19 ± 0.06 at 36 DIM to −0.27 ± 0.07 at 
305 DIM; Figure 6).

DISCUSSION

The present study aimed to quantify the extent of 
genetic variability in milk processing characteristics 
predicted by mid-infrared spectroscopy from a large 
database of dairy cows reared mainly in a grazing dairy 
production system. Results indicated that genetic vari-
ation indeed exists for all milk processing traits, and 
that these milk quality features were only weakly to 
moderately genetically correlated with milk production 
and composition, with the exception of both k20 and 
a30 which were strongly (−0.88 and 0.90, respectively) 
correlated with the milk nitrogen constituents (i.e., 
protein and casein concentrations). Therefore, although 
genetic gain for milk processability could be achieved, 
the current selection objectives on production traits 
such as milk yield and fat and protein content (Miglior 
et al., 2005) are not fully exploiting the potential to 

genetically improve milk processability. Indeed, the 
coefficient of genetic variation in the milk processing 
features independent of genetic merit for protein con-
centration was 6.71% for RCT, 5.47% for k20, 3.14% for 
a30, 1.62% for a60, 10.08% for HCT, and 1.97% for CMS.

The use of covariance functions in the present study 
facilitated the modeling of the genetic (co)variances of 
milk processing characteristics along the entire lacta-
tion. Covariance functions have been extensively ap-
plied to the analysis of longitudinal data (van der Werf 
et al., 1998; Nobre et al., 2003; Berry et al., 2007). In 
the present study, milk processing attributes were mod-
eled using a third-order Legendre polynomial, similar 
to Pretto et al. (2014), who used random regressions 
to model the genetic variation in RCT and a30 of dairy 
cows. Vallas et al. (2010), however, modeled both the 
additive genetic and permanent environmental vari-
ances using a second-order Legendre polynomial. The 
decomposition of the additive genetic (co)variance ma-
trix into its eigenvectors and eigenvalues for all milk 
processing traits in the present study revealed that 
the smallest eigenvalue was explaining only a small 
proportion of the additive genetic variance. Therefore, 
the addition of the third-order polynomial did not 
dramatically improve the fit to the data and, in fact, 
may have over-fitted the extremities of the lactation, 
as purported by Legarra et al. (2004) when modeling 
growth curves of beef cattle.

Extent of Genetic Variability in Milk  
Processing Characteristics

With the exception of CMS and milk pH, the coeffi-
cient of genetic variation in milk processing attributes, 
which in the present study ranged from 3.08% (a60) 
to 11.51% (k20), was comparable to the extent of ge-
netic variation in milk yield (10.79%) and milk protein, 
fat, and casein concentrations (4.58, 7.83, and 4.98%, 
respectively) also estimated in the present study. The 
existence of genetic variation in milk coagulation 
properties predicted by mid-infrared spectroscopy has 
previously been documented by Tiezzi et al. (2013) in 
a population of 16,089 Italian Holstein-Friesian dairy 
cows. The calculated coefficients of genetic variation 
based on the information provided by Tiezzi et al. 
(2013) were 8.43 and 19.33% for RCT and a30, respec-
tively. To our knowledge, however, the extent of genetic 
variation in HCT and CMS has never been previously 
quantified.

Based on normal distribution theory, the expected 
mean performance of the top 20% of individuals rela-
tive to the mean is 1.4 standard deviation units; this 
equates to a reduction in milk RCT of 2.31 min, 3-mm 
stronger curd, greater milk ability to withstand high-

https://doi.org/10.3168/jds.2017-12642
https://doi.org/10.3168/jds.2017-12642
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Figure 4. Within-trait genetic correlation between 5 DIM (□), 150 DIM (♦), and 305 DIM (∆) and the rest of lactation for (A) rennet 
coagulation time; (B) curd-firming time; (C) curd firmness at 30 min; (D) curd firmness at 60 min; (E) heat coagulation time; (F) casein micelle 
size; and (G) pH. Standard errors ranged between 0.00 and 0.02.
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temperature treatments (by 1 min), and lower milk 
acidity (−0.03). Based on the positive phenotypic cor-
relation between a30 and casein concentration estimated 
by Visentin et al. (2017) from the present data set, 
these top 20% individuals could yield 1.89% more cheese 
than the average individual, as casein concentration is 
a predictor of cheese yield (Van Slyke and Price, 1949). 
Assuming a milk fat concentration of 3.90% and a 
Cheddar cheese water content of 37.7% (Visentin et al., 
2017), such an improvement corresponds to 0.21 kg of 
extra cheese/100 kg of milk processed. Therefore, over 
the entire 305-d lactation the potential extra revenue is 
€35/cow, assuming a market price for Cheddar cheese 
of €3.20/kg (IFA, 2016) and individual milk yield per 
lactation of 5,217 kg (Coffey et al., 2016). The main 
consequence of low milk HCT is fouling at the dairy 
plant level, resulting in reduced production efficiency 
and greater associated costs for energy consumption as 
well as machinery maintenance, which can account for 
up to 80% of the total production costs in processing 
(Bansal and Chen, 2006). Benefits therefore clearly ex- T
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Figure 5. Genetic correlation (SE in parentheses) between (A) 
rennet coagulation time and curd-firming time (♦; 0.01 to 0.03), curd 
firmness at 30 min (∆; 0.01 to 0.03), curd firmness at 60 min (●; 0.02 
to 0.07), heat coagulation time (×; 0.03 to 0.12), and casein micelle 
size (∗; 0.03 to 0.06), and (B) heat coagulation time and curd-firming 
time (♦; 0.03 to 0.10), curd firmness at 30 min (∆; 0.03 to 0.11), curd 
firmness at 60 min (●; 0.03 to 0.11), casein micelle size (∗; 0.03 to 
0.10), and pH (+; 0.04 to 0.13).
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ist to breeding programs for improved milk processing 
ability.

One obstacle to identifying animals divergent in ge-
netic merit for milk processing characteristics (or most 
traits) is having sufficient records to achieve a high ac-
curacy of selection; this requires routine access to the 
relevant phenotypic data, which can be augmented by 
accompanying genomic data, although the latter does 
still not preclude the necessity for phenotypic data. 
Based on the heritability and repeatability estimates 
from the present study, the number of progeny with one 
lactation record each required to achieve a reliability 
(i.e., squared accuracy of selection) of 0.70 is 31 for 
RCT, 19 for k20, 24 for a30, 31 for a60, 56 for HCT, 28 
for CMS, and 33 for pH. The average parity number 
of cows in the present study was 3, suggesting that 
the reliability of the prediction of animal genetic merit 
is 0.49 for RCT, 0.63 for k20, 0.57 for a30, 0.48 for a60, 
0.30 for HCT, 0.50 for CMS, and 0.46 for pH. Because 

all individual cow (and bulk tank) milk samples are 
routinely subjected to mid-infrared spectroscopy analy-
sis, generating these quantities of phenotypic records 
using mid-infrared spectroscopy–predicted milk pro-
cessing characteristics (Visentin et al., 2017) should be 
achievable and, importantly, achievable at no marginal 
cost once the calibration equations are developed and 
validated.

Breeding Strategies to Improve Product  
Consistency over Time

Milk processing attributes, as well as output yield 
(i.e., cheese yield and whole and skim milk powder) 
have previously been documented to change with stage 
of lactation (Barłowska et al., 2014; Sneddon et al., 
2016; Visentin et al., 2017). Because of the seasonal 
calving systems adopted by some countries such as Ire-
land (Berry et al., 2013), such temporal effects across 
lactation, compounded with seasonal effects (Visentin 
et al., 2017), manifest themselves as systematic tempo-
ral variability in milk quality across calendar months of 
the year. Such seasonal effects are minimized in many 
production systems through the adoption of year-round 
calving, thereby ensuring product yield and consistency 
all year round. Nonetheless, the cyclic variability in milk 
processing characteristics in seasonal-calving herds can 
represent a challenge for dairy processors (Downey and 
Doyle, 2007). Therefore, the possibility of altering the 
lactation profile for milk processing traits through ani-
mal breeding could be very advantageous to improve the 
efficiency of a manufacturing plant. The use of random 
regression models facilitates the estimation of breeding 
values for the trait under investigation across each DIM 
and thus facilitates the quantification of the potential 
to alter the lactation profile (Kirkpatrick et al., 1990). 
Because curd firmness is strong at the beginning (5–30 
DIM) of lactation, but weakens to 31–60 DIM (Visen-
tin et al., 2017), selection on the second eigenfunction 
for a30 could potentially reduce such a weakness with 
potential increased output losses (i.e., less cheese yield). 
Based on the evidence from the present study, however, 
the eigenfunction associated with the largest eigenvalue 
of all processing traits (as well as milk composition and 
yield) did not change sign over the entire lactation. 
Because the genetic variance attributable to the inter-
cept term of the covariance function explained more 
than 80% of the genetic variance, strategies to alter 
the shape of the lactation profile, although still pos-
sible, would require greater selection pressure on the 
DIM (or eigenfunction) of relevance. The conclusion of 
a similar (set of) genes affecting milk processing char-
acteristics across the entire lactation was substantiated 
by the generally strong within-trait genetic correlations 

Figure 6. Genetic correlation (SE in parentheses) between (A) 
milk yield and rennet coagulation time (□; 0.03 to 0.08), curd-firming 
time (♦; 0.02 to 0.05), curd firmness at 30 min (∆; 0.02 to 0.06), curd 
firmness at 60 min (●; 0.03 to 0.07), heat coagulation time (×; 0.04 to 
0.12), casein micelle size (∗; 0.03 to 0.06), and pH (+; 0.04 to 0.10), 
and (B) milk protein concentration and rennet coagulation time (□; 
0.01 to 0.04), curd-firming time (♦; 0.01 to 0.02), curd firmness at 30 
min (∆; 0.01 to 0.02), curd firmness at 60 min (●; 0.01 to 0.03), heat 
coagulation time (×; 0.02 to 0.10), casein micelle size (∗; 0.01 to 0.06), 
and pH (+; 0.02 to 0.06).
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across DIM. Nonetheless, simultaneous genetic change 
in 2 traits can still be achieved in spite of moderate to 
strong genetic correlations as evidenced by the ability 
to simultaneously improve milk production and repro-
duction performance, even if antagonistically correlated 
(Berry et al., 2014). Therefore, being able to alter the 
lactation profile for milk processing characteristics, in 
tandem with altering the height of the lactation profile, 
could be extremely beneficial in seasonal-calving pro-
duction systems and help provide more consistent milk 
attributes across all seasons of the year.

Consequences of Breeding for Milk Processability 
on Milk Production and Vice Versa

Selection for increased milk production in dairy cows 
has predominated historical breeding objectives glob-
ally (Miglior et al., 2005) and contributed to more than 
double the lactation milk yield in 40 years (Oltenacu 
and Broom, 2010). Although production traits (milk, 
fat, and protein yields) remain a large component of 
current breeding objectives, emphasis is also placed on 
nonproduction, functional traits such as health and re-
production (Miglior et al., 2005). Whereas most coun-
tries have a negative weighting on milk yield in their 
national breeding goals, some countries, such as Latvia, 
South Africa, Switzerland, and the United States, still 
have a positive weight. Although the other countries 
have a negative weight on milk yield, the generally 
large positive weights on fat and protein yields imply a 
positive expected response to selection for milk yield. 
Evidence from the present study indicates antagonis-
tic genetic correlations between milk yield and milk 
coagulation properties (ranging from 0.31 to 0.50 in 
absolute value), and these antagonistic genetic correla-
tions corroborate previous studies in Finnish Ayrshire 
(Ikonen et al., 2004) and Holstein dairy cows (Vallas 
et al., 2010). The results from the present study sug-
gest that, based on selection index theory, each unit 
(e.g., kg) increase of daily milk yield is expected to 
lengthen RCT by 0.41 min, and to weaken a30 by 0.79 
mm. Consequently, emphasis should be given to at least 
one milk coagulation properties trait to halt such dete-
rioration, although the consequence will be a reduced 
rate of genetic gain in milk production. For example, if 
the breeding goal consisted solely of milk yield, to halt 
any deterioration in a30 would require an emphasis of 
31% (relative to the emphasis given to milk yield). In 
such a scenario, the genetic gain in milk yield would 
be only 87% of the genetic response when only milk 
yield was included in the breeding goal. This emphasis 
on a30, however, would also be sufficient to halt any 
deterioration in RCT. Similarly, to achieve a genetic 
gain of 0.5 min in HCT, an emphasis of 36% (relative 

to the emphasis given to milk yield) would need to 
be given to HCT, with negligible repercussions on the 
genetic response on milk yield. However, selection on 
both milk yield and HCT would still require emphasis 
also on at least one milk coagulation property to halt 
deterioration. The necessity of giving emphasis to a 
series of milk quality features, including technological 
characteristics, was suggested by Henchion et al. (2016) 
based on stakeholder involvement in a Delphi study. 
Indeed, an emphasis of 16% on a milk quality sub-index 
was advised by Henchion et al. (2016) to halt any dete-
rioration on milk quality traits.

CONCLUSIONS

Our results clearly indicate that exploitable genetic 
variation exists for all milk processing traits, suggesting 
that breeding for improved milk processability is in-
deed achievable. Although the fitted random regression 
models provide estimated breeding values for every day 
of lactation, with the exception of the 2 peripheries of 
the lactation, the within-trait genetic correlations for 
all processing attributes were all moderate, suggesting 
that the trait measured at any stage of lactation could 
be assumed the same trait. Therefore, unless there is 
interest in altering the lactation profile (e.g., in sea-
sonal-calving herds) for milk processing characteristics, 
a simple repeatability model may suffice to undertake 
genetic evaluations for these traits.
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