46 research outputs found

    Flow boiling of carbon dioxide: Heat transfer for smooth and enhanced geometries and effect of oil. state of the art review

    Get PDF
    This paper presents a state-of-the-art review on flow boiling of carbon dioxide, including experimen- tal studies and correlations for smooth and enhanced tubes, with pure CO 2 and CO 2 /lubricant mixtures. Specifically, 5223 CO 2 heat transfer coefficient data in smooth tubes are collected, and the effect of the operating conditions is discussed. Additional 883 data points in microfin tubes and 1184 experimental heat transfer coefficients in smooth tubes with CO 2 /oil mixture are also collected, and the influence of the microfin structure and of the oil presence on the heat transfer mechanism is analyzed. The statistical analysis has highlighted that the CO 2 -based correlation of Fang et al. is very accurate ( MAE = 5.1%) for the smooth tube database, whereas the heat transfer coefficients in microfin tubes are satisfactorily predicted ( MAE = 30.5%) with the model of Mehendale. Among the available cor- relations for CO 2 /oil mixture in smooth tubes, the method of Gao et al. provides the highest accuracy ( MAE = 63.2%)

    Flow boiling of R452A: Heat transfer data, dry-out characteristics and a correlation

    Get PDF
    This paper presents an experimental investigation on two-phase heat transfer and dry-out occurrence for refrigerant R452A in a single horizontal circular stainless-steel tube having an internal diameter of 6.0 mm. The effects of mass flux (from 150 to 600 kg/m2s), saturation (bubble) temperature (from 23 to 55 °C) and heat flux (from 10 to 65 kW/m2) are investigated and discussed. Heat transfer coefficient and dry-out vapor quality data are then compared to R404A results in the same operating conditions, observing that the nucleate boiling contribution of the new blend is penalized by its very high temperature glide during evaporation. The assessment of some dry-out and flow boiling heat transfer coefficient prediction methods is finally carried-out and a correction factor on the nucleate boiling term is proposed to take into account the negative effect of the temperature glide difference on the mass diffusion in the liquid. By implementing this modification on two chosen asymptotic models, the statistical error analysis is considerably improved

    Experimental evaluation of the thermal conductivity for additive manufactured materials. New test facility concept and preliminary tests

    Get PDF
    Items for heat transfer made by metal foams or additive manufactured structures allow to create special components for several applications (i.e. fast response PCM, complex and light HEXs working at high temperatures for the aerospace sector). For their design thermo-physical properties data are required, such as thermal conductivity. To accurately measure this parameter with conventional procedures for metallic items (e.g. flash methods), the specific heat and density should be measured each time depending on the actual composition of the porous media (estimation is not yet reliable and porosity not known). The scope of this paper is to validate a test facility and the relative method for the data reduction to proof the possibility to measure directly the thermal conductivity with samples of small size. The experiments, carried-out with square samples (30 30 mm2), allow to measure a range of thermal conductivity between 5 and 50 W/m K. The main aspect of the experimental method is the calibration of the heat losses towards the environment by means of a reverse technique. The assessment of the results against samples of known materials was good

    Adiabatic frictional pressure gradient during flow boiling of pure refrigerant R1233zd and non-azeotropic mixtures R448A, R452A and R455A

    Get PDF
    The research on two-phase flow characteristics of refrigerants is of primary importance in several fields, such as air conditioning and refrigeration systems. Therefore, the determination of the pressure drop during flow boiling is important for the correct design of evaporators and heat spreaders systems. This paper presents a collection of experiments on flow boiling pressure drop using pure refrigerant R1233zd and new low-GWP refrigerant mixtures R448A, R452A and R455A. All tests were performed in adiabatic conditions, in a smooth horizontal stainless-steel tube having an internal diameter of 6.0 mm and a thickness of 1.0 mm. The effect of operating parameters, such as (bubble) saturation temperature (from 25 to 65 °C) and mass flux (from 150 to 600 kg/m2s) is investigated and discussed, and the performance of the chosen fluids is also compared. Finally, an assessment of existing prediction methods is carried-out to find the most suitable correlations for two-phase pressure drop evaluation

    Waste heat driven multi-ejector cooling systems: Optimization of design at partial load; seasonal performance and cost evaluation

    Get PDF
    In this paper, a seasonal performance analysis of a hybrid ejector cooling system is carried-out, by considering a multi-ejector pack as expansion device. A 20 kW ejector-based chiller was sized to obtain the optimal tradeoff between performance and investment costs. The seasonal performance of the proposed solution was then evaluated through a dynamic simulation able to obtain the performance of the designed chiller with variable ambient temperatures for three different reference climates. The optimized multi-ejector system required three or four ejectors for any reference climate and was able to enhance the system performance at partial load, with a significant increase (up to 107%) of the seasonal energy efficiency ratio. The proposed system was then compared to conventional cooling technologies supplied by electric energy (electrical chillers EHP) or low-grade heat sources (absorption chillers AHP) by considering the total costs for a lifetime of 20 years and electric energy-specific costs for domestic applications from 0.10 to 0.50 €/kWhel. The optimized multi-ejector cooling system presented a significant convenience with respect to both conventional technologies. For warmer climates and with high electricity costs, the minimum lifetime for the multi-ejector system to achieve the economic break-even point could be as low as 1.9 years

    Flow boiling of azeotropic and non-azeotropic mixtures. Effect of the glide temperature difference on the nucleate boiling contribution: Assessment of methods

    Get PDF
    Due to the increasing concern about the global warming caused by the use of conventional refrigerants, new HFC/HFO blends are currently proposed to replace high-GWP substances. Most of them, however, present a considerable temperature glide that may negatively affect the nucleate boiling contribution to the heat transfer during evaporation. In this paper, flow boiling data of the new non-azeotropic mixtures R452A and R448A (carrying a high temperature glide of almost 5 °C) and of the conventional quasi-azeotropic blend R404A are provided in a horizontal stainless-steel tube having an internal diameter of 6.0 mm. For all the investigated fluids, the operating conditions explore mass fluxes from 150 to 600 kg/m2s, saturation temperatures from 25 to 55 °C and imposed heat fluxes from 10 to 40 kW/m2, in the whole range of vapor qualities. The nucleative boiling contribution is then isolated from the overall heat transfer coefficient data at disposal and the effect of the heat flux is discussed for both types of blends. Finally, the experimental values and trends are compared to different nucleate boiling correlations taken from literature and conceived for pure fluids, by testing some correction factors explicitly developed for high temperature glide substances

    Experimental investigation on flow boiling heat transfer and pressure drop of refrigerants R32 and R290 in a stainless steel horizontal tube

    Get PDF
    The purpose of this paper is to present new flow boiling heat transfer and pressure drop data in a single, horizontal smooth stainless steel tube of 6.0 mm internal diameter, in which R32 and R290 (propane) are employed as working fluids. The cross sectional average heat transfer coefficients are obtained by measuring the temperatures at the top, bottom, left and right sides of the channel. The experimental trends are analyzed for different operating conditions in terms of mass velocity (from 150 to 300 kg/(m2 s)) and heat flux (from 10 to 40 kW/m2). The saturation temperature is fixed to 25 °C for the heat transfer data and to 25 and 35 °C for the pressure drop experiments. The effects of the operative parameters and of the working fluids on local heat transfer coefficients and frictional pressure drop are discussed and the experimental data are finally compared with some of the available correlations taken from scientific literature

    Thermo‐economic analysis of a hybrid ejector refrigerating system based on a low grade heat source

    Get PDF
    The rising of the global energy demand requires the use of alternative energy conversion systems employing renewable sources. In the refrigeration and air conditioning fields, heat driven ejector systems represent a promising way to produce the cooling effect by using available low-grade temperature sources. In this paper, a thermo‐economic analysis of a waste heat recovery hybrid ejector cycle (WHRHEC) was carried out. A thermodynamic model was firstly developed to simulate a WHRHEC able to obtain chilled water with a cooling load of 20 kW, by varying the working fluids and the pinch point values in the heat exchangers. Specific single‐ and two‐phase heat transfer correlations were used to estimate the heat transfer surface and therefore the investment costs. The operative ranges that provide a reasonable compromise between the set‐up costs and the cycle performances were then defined and compared to the current waste heat‐driven technologies, such as absorption chillers and organic Rankine cycles (ORCs) coupled with vapor compression cycles (VCCs). The last part of the paper presents an economic analysis providing the map of the design (plant size) and contingent (specific cost of energy, waste heat availability) variables that lead to the economic convenience of a WHRHEC system when integrated to a conventional VCC plant

    Influencing factors on flow boiling of carbon dioxide in enhanced tubes and comparison with correlations

    Get PDF
    Carbon dioxide two-phase flow characteristics are different from those of conventional refrigerants, due to the CO2 particular thermodynamic and transport properties obtained by working at high reduced pressures. Moreover, the use of peculiar heat transfer surfaces such as grooves and internal fins are often preferred to enhance the boiling heat transfer performance. This paper collects CO2 flow boiling heat transfer coefficient data from different independent databases available in scientific literature, regarding both smooth and enhanced geometries and a wide range of operative conditions, that are typical of refrigeration systems and heat pumps. The database for enhanced tubes covers internal diameters from 0.8 to 8.92 mm, saturation temperatures from -30 to +20 °C, imposed heat fluxes from 1.67 to 60 kW/m2 and mass velocities from 75 to 800 kg/m2s, collecting more than 800 points. Heat transfer data for smooth and enhanced surfaces under the same conditions are collected, in order to measure the enhancement and to correlate it to the geometry augmentation. The assessment of quoted prediction methods explicitly developed for carbon dioxide is finally carried out, with a proposal for a correction factor

    critical heat flux in a multi minichannel heat sink effect of the heated length on diameter ratio

    Get PDF
    This paper exhibits saturated CHF experimental values obtained with R134a and R1234yf, working at saturation temperatures from 25 °C up to 65 °C (i.e. reduced pressures from 0.16, 0.20 and up to 0.46, 0.54, respectively). The mass flux was let to vary from 150 up to 350 kg/m2 s. All tests were performed with an aluminum multi-minichannel heat sink, made up of seven rectangular ducts, each of them 2 mm wide, 1 mm high and 35 mm long. Two heated lengths of 25 and 35 mm were structured, in order to study two different Lh/Deq ratios. The results show that critical heat flux is enhanced with increasing the mass flux and decreasing the saturation temperature. A greater Lh/Deq ratio leads instead to lower CHF values
    corecore