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Abstract 

This paper presents a state-of-the-art review on flow boiling of carbon dioxide, including 

experimental studies and prediction methods for smooth and enhanced tubes, with pure CO2 and 

CO2/lubricant mixtures. Specifically, 5223 heat transfer coefficient data with pure CO2 in smooth 

tubes were collected, and the effect of the operating conditions is discussed. The experimental 

Nusselts are then compared to pure nucleative and convective heat transfer, once data are sorted 

according to their corresponding flow pattern.  

Additional 883 CO2 data points in microfin tubes and 1184 experimental heat transfer coefficients 

in smooth tubes with CO2/oil mixture are also collected, and the influence of the microfin structure 

and of the oil presence on the heat transfer mechanism is analyzed.  

Finally, specific carbon dioxide prediction methods for two-phase heat transfer coefficient 

developed in smooth, enhanced tubes and with oil/CO2 mixtures are implemented and compared 

with the experimental data, providing a comprehensive statistical analysis. 

 

Keywords: CO2; review; flow boiling heat transfer; enhanced tubes; heat transfer with oil; 

prediction methods. 
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Highlights 

1) Collection of boiling data for pure CO2 and with CO2/lubricant mixtures. 

2) Effect of operating conditions and oil presence on the heat transfer analyzed. 

3) Data in smooth tubes sorted and analyzed according to their flow pattern. 

4) Experimental data compared to only-convective and only-nucleative heat transfer. 

5) Assessment of methods developed for flow boiling of carbon dioxide.  
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Nomenclature 

Roman 

cp specific heat at constant pressure [J kg
-1

 K
-1

] 

d tube internal (equivalent) diameter [m] 

Deq equivalent diameter (for annular flow) [m] 

E convective boiling enhancement 

factor 

[-] 

G mass flux [kg m
-2

 s
-1

] 

g acceleration of gravity [m s
-2

] 

h heat transfer coefficient [W m
-2 

K
-1

] 

Hfin fin height [m] 

iLV latent heat [J kg
-1

 K
-1

] 

J superficial velocity [m s
-1

] 

M molecular mass [kg kmol
-1

] 

q heat flux  [W m
-2

] 

P pressure [Pa] 

S nucleate boiling suppression factor [-] 

T temperature [°C] 

u velocity [m s
-1

] 

x vapor quality  [-] 

   

   

Greek 

α void fraction [-] 

λ thermal conductivity [W m
-1

 K
-1

] 

δ liquid film thickness [m] 

μ viscosity [Pa s] 

ρ density [kg m
-3

] 

σ surface tension [N m
-1

] 

θdry dry angle [rad] 

ω0 nominal oil mass fraction [-] 

ψ percentage of data points falling into a 

±30% error band 

[%] 

χ percentage of data points falling into a 

±50% error band 

[%] 

   

   

Non-dimensional numbers and statistical parameters 

Bo Boiling number 
 

     
  

Bd Bond number          
 

 
  

Co Confinement number  

 
 

 

        
  

Fr Froude number 
 

   
  

Nu Nusselt number   

 
  

Pr Prandtl number 
 

   
  

Re Reynolds number      

 
  

We Weber number    

   
  

Xtt Martinelli parameter  
   

 
 
   

 
  

  
 
   

 
  

  
 
   

  

|η| Mean Absolute Error (MAE)  
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η Mean Relative Error (MRE)  

 
 

          

    
    

   

   

Subscripts 

cb convective boiling  

cr critical  

exp experimental  

L liquid  

LO liquid only  

m related to the oil/CO2 mixture  

nb nucleate boiling  

oil lubricant  

pred predicted  

red reduced  

sat saturation  

V vapor  

VO vapor only  

wet wet portion  
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1. Introduction 

1.1 Background and CO2 properties 

The use of carbon dioxide (CO2 or R744 according to the ASHRAE classification) as refrigerant 

goes back to the earliest era of the vapor compression cycles, starting from the last decades of the 

19
th

 century. As reviewed by Kim et al. [1], the first CO2 system was fabricated by the American 

Thaddeus S.C. Lowe in the late 1860s [2], even if he did not further develop his idea [3]. Later on, 

in 1881, Carl Linde built the first European vapor compression cycle employing carbon dioxide [4]. 

During the first decades of the 20
th

 century, with improving technology, CO2 was widely used as 

working fluid in air conditioning and stationary refrigeration systems as well as in marine 

applications, before being suddenly phased-out with the upcoming synthetic CFCs, which granted 

lower operating pressures and lower compressor discharge temperatures. Only in recent times, with 

the increasing concern for the anthropological global warming, carbon dioxide and other natural 

fluids are receiving a renewed interest as alternative working fluids. As suggested by Lorentzen [5], 

by excluding air and water, CO2 is the refrigerant coming closest to the ideal of harmlessness to the 

environment. As regards its safety characteristics, it is non-toxic (a maximum acceptable 

concentration to avoid physiological effects is about 4-5% in volume [1]) and incombustible. Its 

accidental release in the liquid form will either evaporate or become solid in the form of snow that 

can be easily removed or left to sublimate, being therefore easier to manage than any other 

halocarbon plant [5]. 

Having a relative low critical temperature of 31.1 °C, CO2 evaporates at much higher reduced 

pressures (0.43 at 0 °C) than other halogenated refrigerants (0.07 at 0 °C for R134a), thus showing 

peculiar thermodynamic and transport properties, for which the available boiling heat transfer 

prediction methods could not be sufficiently effective. Firstly, CO2 presents the highest vapor 

density and vapor-to-liquid density ratio when compared to halocarbons and hydrocarbons [6], 

providing both an increased volumetric refrigeration capacity and smaller differences between the 

liquid and the vapor phase velocities, with less interface shear and a more homogeneous two-phase 

flow behavior than other fluids [7]. Secondly, the very low liquid viscosity contributes to limited 

pressure drop for boiling carbon dioxide and a surface tension lower by one order of magnitude 

leads from one side to destabilize the liquid surface, with increased droplet formation and 

entrainment, possibly causing a premature onset of dryout [7]. On the other hand, reduced surface 

tension tends to require lower superheat for bubble nucleation and bubble growth, thus increasing 

the heat transfer efficiency. As a summary, the heat transfer coefficients of boiling CO2 are 

typically 2-3 times greater than those of conventional refrigerants when used at the same operating 
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conditions, while the pressure drop is considerably smaller and can often be neglected [8]. For this 

reason, the present review deals only with heat transfer topics and pressure drop is instead not 

addressed. 

 

1.2 Possible applications and drawbacks 

Its good thermodynamic and transport characteristics make carbon dioxide an interesting alternative 

refrigerant to R404A for several low-temperature applications, such as commercial refrigeration 

systems [9] [10] [11], cascade cycles [12] [13], and also transcritical ejector plants [14] [15] [16]. 

However, the very high carbon dioxide operating pressure (up to 120 bar in transcritical cycles 

against a typical maximum value of 20 bar for R404 systems) represents one of the drawbacks of its 

use, and often requires a complete re-design of components and materials. According to the thin-

walled pressure vessel theory, with a gauge pressure of 20 bar for a 6 mm internal diameter tube, 

copper can be easily employed with a reasonable thickness of 0.50 mm, as shown in Figure 1a. By 

using CO2 at 120 bar in the same diameter tube, instead, other materials such as reinforced K65 

copper or stainless steels are typically considered, thanks to their higher yield stress, whereas 

copper would require unrealistic thicknesses. The use of lower thermal conductivity metals may in 

turn penalize the overall conductance UA, especially in case of fin and tube type heat exchangers, 

due to an increased fin pitch for manufacturing demands, and also the simultaneous increase of the 

wall thermal resistance and the reduction of the surface efficiency     . Figure 1b shows the global 

conductance of a fin and tube (6 mm inner diameter and 0.50 mm thickness) evaporator with 10 

tubes per row, 4 rows, and a length of 1.0 m, either for CO2 (steel tubes and aluminum fins) or 

R404A (copper tubes and aluminum fins) as a function of the refrigerant side heat transfer 

coefficient. Two different total-over-internal heat transfer surface ratios of 100 and 80 are 

considered for the two fluids, respectively, to take into account the fin pitch differences. The air-

side heat transfer coefficient he, the surface efficiency      and the UA expression are all taken and 

calculated from the work of Wang and Chi [17] [18]. It is highlighted that for typical two-phase 

heat transfer coefficient values included in a range of 2.0 and 10.0 kW/m
2
K, the use of different 

materials to cope with the higher CO2 system pressures leads to a non-negligible penalization on the 

global conductance UA, that should be carefully taken into account during the design process. 
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Figure 1 (a) Required thickness for a cylindrical pressure vessel having an internal diameter of 6.0 mm, for three 

different materials used for heat exchangers manufacturing, according to:    
   

   
 (with    as yield stress and  =2 as 

factor of safety). (b) Global conductance in a fin and tube HEX by using either steel (for CO2) or copper tubes (for 

R404A), as a function of the refrigerant side heat transfer coefficient.  

 

1.3 Review outline 

The main goal of the present work is to provide an overview of the experimental CO2 flow boiling 

research studies, together with an assessment of the available correlations specifically developed for 

carbon dioxide, thus updating the latest state of the art by Thome and Ribatski [8] performed in 

2005. Specifically, a general description and trend analyses of the databank is presented, consisting 

in approximately 7000 heat transfer coefficient points from more than 40 independent studies, 

including smooth and enhanced tubes with pure CO2 and CO2/oil mixtures. The convective and 

nucleate boiling contributions are also critically evaluated for several subsets of the database 

(separated for smooth tubes by flow pattern). Moreover, for each dataset, the assessment of the 

available heat transfer prediction methods explicitly developed for carbon dioxide is finally carried-

out.  

2. Experimental database for smooth tubes 

The research has highlighted 37 flow boiling studies using carbon dioxide as working fluid, from 

2002 until 2019, covering a wide range of operating conditions. In this section, only pure CO2 data 

in smooth tubes have been isolated from those works including CO2 mixtures with other 

refrigerants, oils and microfinned surfaces (that will be instead the topic of the following section), 

by collecting a total amount of 5223 heat transfer coefficient data. The experiments have been 
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performed for mass fluxes from 40 to 1500 kg/m
2
s, saturation temperatures from -40 to +25 °C, 

heat fluxes from 0.5 to 60 kW/m
2
, tube diameters from 0.51 mm to 14 mm and different 

geometrical configurations (single/multi-channels, circular/rectangular pipes). All the experiments 

have been conducted in horizontal tubes. The whole database is shown in Table 1 and has been split 

for the readers’ convenience in macro and micro-channel studies. Some macro-to-micro scale 

transition criteria are based on the tube diameter, as for the method of Mehendale et al. [19] and of 

Kandlikar and Grande [20], in which 6 mm and 3 mm are respectively set as threshold between 

conventional and compact tubes. In the present study, the experimental data are denominated as 

macro and micro scale according to the method proposed by Kew and Cornwell [21], which is an 

approximate physical criterion based on the confinement effect of a bubble within a channel. As 

stated by the authors, for Confinement numbers Co>0.5 (defined in nomenclature), the macroscopic 

laws are not suitable to predicts flow pattern transitions and heat transfer coefficients.  

Figure 2 shows the threshold diameter from macro to mini-scale according to the three mentioned 

criteria as a function of the saturation temperature, including also the experimental points from the 

smooth tube database. It is worth noting that, according to the method of Kew and Cornwell, the 

transition diameter changes with saturation temperature, passing from approximately 2.5 mm at -50 

°C up to 0.35 mm in case of +30 °C. With this criterion, most of the collected data points (55%) fall 

within the macro-scale region. 

Among the macro-channel studies, Yun et al. [22] investigated heat transfer and dryout 

characteristics of carbon dioxide in a horizontal tube with an inner diameter of 6.0 mm, a wall 

thickness of 1.0 mm and a heated length of 1.4 m. They found that dryout of CO2 is anticipated with 

respect to refrigerant R134a and that the correlation of Gungor and Winterton [23] gave good 

prediction of boiling heat transfer coefficient data only for high mass fluxes. Later on, the same 

authors presented two new studies, the first dealing with boiling CO2 in a multi-microchannel heat 

exchanger with rectangular tubes [24], finding that the experimental heat transfer coefficient were 

well predicted by the typical pool boiling correlations. Their latest work [25] presented instead new 

experimental data in tubes of 0.98 and 2.0 mm, focusing on the post-dryout region and proposing a 

correlation. 

Yoon et al. [26] measured two phase heat transfer and pressure drop of evaporating carbon dioxide 

in a 7.53 mm tube and a length of 5 m, in which the heat flux was provided by directly applying DC 

current to the test tube. It was found that the heat transfer coefficient was increasing with vapor 

quality and with heat flux, showing a typical nucleate boiling trend, even if a quite premature dryout 

was observed.  
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Zhao and Bansal [27] studied boiling heat transfer of CO2 at a low temperature of -30 °C in a 

horizontal 4.57 mm tube (at -30 °C) and observed a convective behavior, with the experimental heat 

transfer coefficient increasing with vapor quality up to the onset of dryout. The authors found that 

none of the tested correlations (including that of Yoon et al. [26] explicitly developed for CO2) were 

able to satisfactorily predict their experimental data. 

Choi et al. [28] [29] [30] conducted a series of experiments on boiling heat transfer of carbon 

dioxide in small tubes of 1.5 and 3.0 mm having a heated length of 2000 and 3000 mm, 

respectively. It was found that the heat transfer coefficient was higher for the lower diameter tube at 

the same conditions and that nucleate boiling contribution was predominant, especially at low vapor 

quality region, with a significant effect of the heat flux and a negligible influence of the mass 

velocity.  

Hihara and Dang [31] provided experimental flow boiling data of carbon dioxide in pre- and post-

dryout region in a 2 mm tube. They observed that the effects of the heat flux and saturation 

temperature were significant in the pre-dryout region, whereas mass flux was the dominating factor 

affecting both the onset of dryout and also the heat transfer coefficient in the post-dryout heat 

transfer region. 

Park and Hrnjak [32] investigated two-phase heat transfer and pressure drop of CO2 and R410A in a 

6.1 mm tube at relatively low saturation temperatures of -15 °C and -30 °C. The authors found that 

the heat transfer coefficients for carbon dioxide were much higher than those of R410A, especially 

for low vapor quality ranges, attributing this behavior to the lower molecular weight and the higher 

reduced pressure of CO2 that imply a higher nucleate boiling contribution. Moreover, the heat 

transfer coefficients of carbon dioxide showed a strong dependence only from the imposed heat 

flux, whereas in case of R410A the heat transfer efficiency was affected by the change of mass flux, 

heat flux and vapor quality. 

Oh et al. [33] [34], in two different studies, experimentally evaluated the effect of operating 

conditions on the two-phase heat transfer coefficient of carbon dioxide among other fluids in 

smooth macro-tubes of 7.75 mm and 4.57 mm, respectively. In both cases, the authors found a 

strong influence of the heat flux, whereas the effect of vapor quality was dependent on the specific 

operating condition tested. Among the different correlations implemented, the flow pattern based 

methods of Thome and El-Hajal [35] and of Cheng et al. [36] developed for CO2 gave the best 

predictions. 

In their horizontal smooth tube of 6.0 mm, Mastrullo et al. [37] [38] [39] presented a series of 

experiments on flow boiling heat transfer of carbon dioxide and R410A exploring the effect of the 

reduced pressure on flow pattern transition and heat transfer coefficient. The authors verified that, 
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when working at the same reduced pressure, the two-phase flow structures and the heat transfer 

coefficient trends with vapor quality were similar for both fluids. However, they found strong 

difference in their absolute values, implying that nucleate boiling contribution was predominant for 

CO2, whereas R410A was more affected by the convective boiling. Among the tested correlations, 

the CO2 heat transfer coefficients were quite well predicted by the flow pattern based method of 

Cheng et al. [36]. 

Zhu et al. [40] presented experimental heat transfer coefficient values for CO2/propane mixture at 

different mass concentrations. In case of pure carbon dioxide, the authors found a significant 

influence of the saturation temperature and heat flux, whereas mass flux and vapor quality caused a 

minor effect. 

Concerning the micro-scale database, Pettersen [41] [42] performed a comprehensive experimental 

campaign on flow boiling of carbon dioxide in a multiport extruded tube with circular minichannels 

of 0.98 mm internal diameter. The results showed that nucleate boiling contribution dominated at 

moderate vapor quality, where the heat transfer coefficient increased with heat flux and temperature 

and was less affected by varying mass flux and vapor quality. Similar multi-minichannel geometries 

were also later on investigated by Jeong and Park [43] and Wu et al. [44]. 

Gasche [45] provided flow visualization and heat transfer data of flow boiling of CO2 in a narrow 

rectangular channel having an equivalent diameter of 0.8 mm. The high data scattering did not 

permit to identify a clear dependency of the heat transfer coefficient with the mass flux and vapor 

quality, even if the experimental data were quite well fitted with the pool boiling correlation of 

Gorenflo [46]. 

Ducoulombier et al. [47] performed a comprehensive experimental campaign on flow boiling heat 

transfer of carbon dioxide in a single minichannel having an internal diameter of 0.529 mm. The 

authors observed both typical nucleate and convective boiling trends, depending on the operating 

conditions. Similar outcomes were also found in the recent studies of Linlin et al. [48] and of Liang 

et al. [49]. 

Finally, Ozawa et al. [50] [51] mostly focused on the effect of the reduced pressure on the boiling 

CO2 flow patterns. Even if the experiments were performed in the narrowest tube of the present 

database (0.51 mm), the authors still observed stratification of the liquid phase and therefore a 

marked difference in the heat transfer coefficient at the upper and lower walls.  
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Figure 2 Transition diameter from conventional to micro-scale according to the threshold criteria of Kew and Cornwell 

[21], Mehendale et al. [19] and Kandlikar and Grande [20] implemented for CO2, as a function of the saturation 

temperature. The markers represent the collected experimental data for smooth tubes in this study. 
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Table 1 Experimental databank for boiling of pure CO2 in smooth tubes. Data for macro and micro-scale are split 

according to the criterion of Kew and Cornwell [21] 

Author Geometry* Internal 

diameter 

[mm] 

Mass 

velocity 

[kg m-2 s-1] 

Heat flux 

[kW m-2] 

Saturation 

temperature 

[°C] 

Number of 

points 

Macro-scale (Co<0.50) 

Yun et al. [22] S,C,H 6 170/340 10/20 5/10 135 

Yoon et al. [26] S,C,H 7.53 318 12.5/18.6 0/20 53 

Schael and Kind 

[52] 

S,C,H 14 75/300 3/60 5 26 

Cho et al. [53] 
[54] 

S,C,H 4/7.72 212/656 6/30 -5/20 200 

Zhao and Bansal 

[27] 

S,C,H 4.57 139.5/231 12.6/19.3 -30 23 

Choi et al. [28] 
[29] [30] [55] 

S,C,H 1.5/3 250/600 10/40 -5/10 446 

Hihara and Dang 

[31] 

S,C,H 1/2 360/1440 4.5/36 5/15 189 

Gao et al. [56] S,C,H 3 380 10 10 13 

Park and Hrnjak 

[32] 

S,C,H 6.1 100/400 5/15 -30/-15 108 

Oh et al. [33] [34] S,C,H 4.57/7.75 200/900 10/40 -5/20 209 

Katsuta et al. [57] S,C,H 3 400 5/15 0/10 51 

Yun and Kim [25] S,C,H 0.98/2 360/1500 18/40 0/15 265 

Mastrullo et al. 

[37] [58] [38] 

[39] 

S,C,H 6 162/526 5/20.3 -7.8/12 532 

Pehlivanoglu et 
al. [59] 

S,C,H 6.1 100/400 2/15 -30/-15 84 

Kim et al. [60] S,C,H 11.2 40/200 0.5/10 -30/-15 116 

Ono et al. [61] S,C,H 3.74 190/380 10/30 10 61 

Dang et al. [62] S,C,H 2/6 360/1440 18/36 15 322 

Zhu et al. [40] S,C,H 2 200/400 5/15 0/10 76 

Liang et al. [49] S,C,H 1.5 300/600 7.5/30 -35/15 89 

Micro-scale (Co>0.50) 

Pettersen et al. 

[41] [42] 

M,C,H 0.79 190/570 5/20 0/25 103 

Yun et al. [24] M,R,H 1.08/1.54 200/400 10/20 0/10 57 

Gasche [45] S,R,H 0.8 58/235 1.8 23.3 63 

Jeong and Park 

[43] 

M,C,H 0.8 400/800 12/18 0/10 51 

Ducoulombier et 
al. [47] 

S,C,H 0.529 200/1400 10/30 -10/0 1185 

Ozawa et al. [50] S,C,H 0.51/1 500/900 30/40 14.3 113 

Wu et al. [63] S,C,H 1.42 300/600 7.5/29.8 -40/0 445 

Wu et al. [44] M,C,H 1.7 200/600 4.17/8.33 15 62 

Linlin et al. [48] S,C,H 0.6/1.5 300/600 7.5/30 -40/0 146 

Overall 0.51/11.2 40/1500 0.5/60 -40/+25 5223 

*M=multi, S=single; C=circular, R=rectangular; H=horizontal, V=vertical 

 

2.1 Recurring trends for macro and micro-channels 

In typical vapor compression cycle applications, carbon dioxide has a very high reduced pressure 

and therefore shows a peculiar flow boiling behavior with respect to other refrigerants, since the 

relative importance of the convective and nucleate boiling contributions are altered. Specifically, 

the nucleate boiling heat transfer is enhanced by means of a very low surface tension and a high 

vapor density, both of them contributing to trigger the bubble nucleation phenomenon with lower 

required wall superheats [64]. As a consequence, the two-phase heat transfer coefficients of CO2 are 

generally higher than those of halogenated refrigerants, as testified by different comparison studies 

[24] [39] [29] [30]. However, no general conclusions can be driven from the above considerations, 
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and despite a higher magnitude of the nucleate boiling contribution, the carbon dioxide two-phase 

heat transfer coefficients might still present a typical convective behavior, depending on the tested 

operating conditions. 

Some recurrent trends showing the effect of the mass flux on the CO2 evaporating heat transfer 

coefficient are shown in Figure 3a-d, for conventional (a-b) and small-diameter tubes (c-d). From 

the study of Liang et al. [49] in Figure 3a (borderline between the macro and micro-scale), a typical 

convective behavior is observed when the imposed heat flux is relative low (7.5 kW/m
2
), with an 

increasing heat transfer coefficient with vapor quality and mass velocity. The slope of the curves 

with vapor quality also increases for higher mass fluxes. The same trends can be observed at similar 

conditions in other macro-channel studies [32] [60] [55] [59]. When a high heat flux is imposed 

(Figure 3b with the study of Oh and Son [34] in a 4.57 mm tube), the effect of both mass flux and 

vapor quality on the local heat transfer coefficient is almost negligible. It is worth noting that a 

slight reduction of the dryout vapor quality is obtained with increasing mass velocity. Similar 

nucleate boiling-driven behaviors in macro-tubes are found in [31] [62] [37]. The same 

considerations can be made in case of minichannels, in which a typical convective behavior is 

observed in the work of Ducoulombier et al. [47] in their 0.529 mm tube (Figure 3c) as well as in 

[63] [48] [45]. For higher heat fluxes, the effect of the mass flux becomes negligible and slightly 

affects the dryout occurrence, as presented in the narrow tube of Ozawa et al. [50] (Figure 3d). In 

the multi-minichannel test section of Pettersen [41] [42], the heat transfer coefficient decreases with 

vapor quality with almost no effect of the mass flux, as also observed in the single minitube of 

Jeong and Park [43]. The same decreasing trend with vapor quality is found in larger tubes in case 

of high imposed heat fluxes in [40] and [53]. 
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Figure 3 Effect of mass flux on CO2 boiling heat transfer coefficient. (a) Convective behavior in macro-channels: data 

from Liang et al. [49]. (b) High imposed heat flux in macro-channels: data from Oh and Son [34]. (c) Convective 

behavior in micro-channels: data from Ducoulombier et al. [47]. (d) High imposed heat flux in micro-channels: data 

from Ozawa et al. [50] 

The typical effects of the imposed heat flux on CO2 boiling heat transfer coefficients are shown in 

Figure 4 for macro- (a-b) and microchannels (c-d). In the first case, for relatively low mass 

velocities, the heat transfer coefficient remains substantially the same with ongoing evaporation and 

is strongly affected by a change of the heat flux, as observed by Grauso et al. [39] in their 6.0 mm 

tubes for a saturation temperature of 7 °C and a mass flux of 200 kg/m
2
s (Figure 4a). Similar 

behaviors in conventional channels are found in [33] [26] [22], with a constant or even decreasing 

heat transfer coefficient trends with vapor quality, that can be caused either by an anticipated dryout 

or by a stratification of the flow. With increasing mass velocity (see the work of Choi et al. [29] in 

Figure 4b), the effect of the heat flux might be confined to the low vapor quality region, where the 

nucleate boiling contribution is still prevailing, while typical convective trends can be observed for 

higher vapor qualities. Similar outcomes are found also for micro-channel studies. For the data of 

Wu et al. [63] in their 1.42 mm tube at G=400 kg/m
2
s (Figure 4c), the heat flux has a significant 

b) a) 

c) d) 



15 

 

effect for the whole investigated vapor quality region. The change from convective to nucleate 

boiling driven heat transfer is also clear with increasing heat flux, as also observed by [48]. For the 

highest heat flux. Pure convective trends, with a negligible effect of the imposed heat flux, are 

shown for the microscale study of Ducoulombier et al. [47] in Figure 4d, when a high mass flux is 

imposed.  

 

 

Figure 4 Effect of heat flux on CO2 boiling heat transfer coefficient. (a) Low mass velocities in macro-channels: data 

from Grauso et al. [39]. (b) High mass velocities in macro-channels: data from Choi et al. [29]. (c) Low mass velocities 

in micro-channels: data from Wu et al. [63]. (d) High mass velocities in micro-channels: data from Ducoulombier et al. 

[47] 

Finally, the effect of the saturation temperature can be different according to flow pattern recorded 

by the original authors and hence to the relative importance of the nucleate and convective boiling 

contributions. In case of convective-driven heat transfer, as observed in the single 0.529 mm 

minichannel of Ducoulombier et al. [47] and by Linlin et al. [48] in their 1.5 mm tube at 300 kg/m
2
s 

and 7.5 kW/m
2
 (Figure 5a), an increase of the saturation temperature leads to a reduction of the heat 

transfer coefficient, especially for high vapor qualities. In fact, for a higher reduced pressure, the 

increased density leads to a reduction of the fluid mean velocity for a fixed mass flux, thus 

c) 

a) b) 

d) 
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penalizing the convective contribution. For low vapor qualities, instead, a higher density benefits 

the nucleate boiling heat transfer by increasing the number of active sites [65]. This effect is 

particularly clear in case of nucleate boiling predominance throughout the evaporation, for high 

imposed heat fluxes, as shown in Figure 5b for the study of Liang et al. [49] and also in [63] and 

[42]. As already mentioned, the reduction of the surface tension with increasing reduced pressure 

enhances the boiling phenomenon, but on the other hand weakens the stability of the liquid film on 

the heated wall, thus possibly leading to a premature dryout, as highlighted in the horizontal 4.57 

mm tube of Oh and Son [34] in Figure 5c. An earlier dryout for carbon dioxide with increasing 

saturation temperature was also observed by Yoon et al. [26] and Oh et al. [33]. 

 

 

Figure 5 Effect of saturation temperature on CO2 boiling heat transfer coefficient from different studies in micro and 

macro-tubes. (a) Data from Linlin et al. [48]. (b) Data from Liang et al. [49] (c) Data from Oh and Son [34] 

 

c) b) 

a) 
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3. Assessment of predictive methods for smooth tubes 

3.1 Nucleate and convective boiling contributions 

Figure 6a-f presents a bar chart distribution of the smooth tube database. The experimental heat 

transfer coefficients from all the authors have been combined (5223 points) and segregated into 

different categories according to their operating conditions, in terms of tube internal diameter, mass 

flux, saturation temperature, heat flux, Boiling number and vapor Weber number. Except for the 6.0 

mm value, most of the data are obtained in smaller than 2.5 mm, with the works of Ducoulombier et 

al. [47] and Ozawa et al. [50] that provide alone more than 1200 data points in minichannels of 0.5 

mm. Remarkable peaks for the imposed heat flux and saturation temperature distributions are 

respectively found at 10, 20 and 30 kW/m
2
 and between -10 and +15 °C. As for the boiling and 

inertia contributions, 99% of the database includes Boiling numbers lower than 6∙10
-4

 and Weber 

vapor numbers lower than 3000. 
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Figure 6 Distribution of data points for flow boiling of CO2 in smooth tubes related to: (a) internal diameter; (b) mass 

flux; (c) saturation temperature; (d) imposed heat flux; (e) Boiling number; (f) vapor Weber number 

 

A fair analysis of the relative importance between the nucleate and convective boiling contributions 

requires the knowledge of the flow regimes occurring during each experiment. However, this 

information is almost never provided by the original authors and therefore the collected heat 

transfer coefficients do not have a corresponding verified flow pattern. In this review, the flow 

pattern map of Cheng et al. [66], explicitly developed for carbon dioxide, is implemented for the 

c) 

a) b) 

d) 

e) f) 
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recognition of the flow regime related to each test. This methods allows to distinguish bubbly flow, 

slug+stratified wavy flow, stratified-wavy flow, stratified flow, intermittent flow, annular flow, 

dryout and mist flow regimes, as shown in Figure 7a presenting also the experimental liquid and 

vapor superficial velocities. According to the Cheng et al. [66] flow pattern map, the distribution of 

the flow regimes for the entire smooth tube database is shown in Figure 7b. Most of the collected 

data are expected to fall into the annular flow regime, with more than 2500 experimental points, 

followed by the mist flow regime (961), dryout (850) and intermittent flow (450). The remaining 

bubbly, stratified, stratified-wavy and slug flow regimes include only 450 heat transfer coefficient 

data. 

 

Figure 7 (a) Experimental superficial liquid and vapor velocities. Flow patterns according to Cheng et al. [66] model. 

(c) Distribution of data points related to the occurring flow patterns 

As pictured from Figure 3 to Figure 5, the collected heat transfer coefficients in smooth tubes 

showed different trends with vapor quality and a distinct influence of the mass flux, heat flux and 

saturation temperature, according to their operating conditions. That is to remark that both typical 

nucleate boiling and convective boiling behaviors are observed during flow boiling of carbon 

dioxide. As first analysis, the two contributions are firstly separated to evaluate their agreement to 

the experimental data. Particularly, the nucleate boiling Nusselt number is calculated by using the 

well-known Cooper [67] pool boiling correlation, without employing any suppression factor: 

   0.12 0.55 0.5 0.6755 ( log )
Cooper

nb Cooper red red

L L

h d d
Nu Nu P P M q

 

        (1) 

As regards the convective contribution, instead, the common practice is the use of a forced 

convection prediction method for single phase multiplied by an enhancement factor E that takes into 

account the flow acceleration with ongoing evaporation. Here, we assume the liquid phase 

a) b) 
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distribution as a symmetric annular flow with a constant liquid film thickness   around the heated 

wall, as shown in Equation (2).  

 

b

eq L L eq c

conv L

L L

hD u D
Nu a Pr



 

 
   

 
  (2) 

The equivalent diameter for the liquid annulus can be geometrically related to the liquid film 

thickness (Equation (3)), which is in turn a simple function of the superficial void fraction   

(Equation (4)). 

 
 

 

4
2

2
eq

d
D

d d

 


  
 

 
  (3) 

  0.51
2

d
     (4) 

The liquid phase actual velocity    can be expressed as a function of the liquid-only velocity (as the 

liquid phase would flow alone in the whole cross section) and the vapor quality and void fraction, as 

shown in Equation (5). 

 
 

 

11

1 1
L LO

L

G xx
u u

  


 

 
  (5) 

By referring the experimental Nusselt number to the tube diameter (being the liquid film thickness 

unknown) and substituting Equations (3), (4) and (5) in Equation (2), the convective contribution 

reads as Equation (6): 

 
 

   
, 1

0.5

1

1 1

b b

c

conv exp L bb
L L

xhd Gd
Nu a Pr

   


   
    
     

  (6) 

The first term of the third member is a typical liquid-only convection heat transfer correlation and 

the last term is an enhancement factor E. Given constants a, b and c as from the Dittus and Boelter 

[68] expression and respectively equal to 0.023, 0.8 and 0.4, the convective contribution is finally 

evaluated with Equation (7): 

 
 

   
0.8

, ,
0.5

0.8

0.4

0.20.8

1
0.023

1 1
conv exp LO L LO Dittus Boelter

x
Nu Re Pr E Nu

 



     

 
  (7) 
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in which the void fraction   is calculated with the Steiner [69] version of the Rohuani and Axelsson 

[70] drift flux model. 

In case of mist flow data, the experimental Nusselt numbers is computed with the vapor phase 

thermal conductivity, whereas the enhancement factor is not considered and the Dittus-Boelter 

expression takes into account the vapor properties.  

The experimental Nusselt numbers are compared with both nucleate and convective Nusselt, 

respectively from Equations (1) and (7) in Figure 8a-f, by segregating the database according to the 

flow regime obtained with the Cheng et al. [66] model. In case of bubbly, slug, stratified-wavy or 

intermittent flow regime, the experimental Nusselt numbers are higher than the only-convection 

Nusselt estimated values (Figure 8a), whereas they are surprisingly well predicted by considering 

only the Cooper correlation for pool boiling (Figure 8b). As regards annular flow points, they are 

not fairly predicted with either only convection (Figure 8c) or only nucleation heat transfer (Figure 

8d). For this bunch of data, a more elaborate correlation combining both contributions should 

instead be considered. For dryout and mist flow data, the experimental Nusselt numbers are 

compared only to the convective heat transfer expression, since nucleation is not likely to occur for 

such flow regimes. Consistently, the dryout data are generally overestimated by the convective 

contribution, implying that specific flow pattern based methods should be used. The remaining well 

predicted data are most likely to belong instead to the annular flow regime, suggesting that the 

annular-dryout transition criterion of Cheng et al. [66] should be modified. Mist flow heat transfer 

coefficients are instead considerably underpredicted by considering the vapor-only Dittus-Boelter 

equation. However, it is worth noting that also in this case some of these data, although classified as 

mist flow according to the Cheng et al. [66] model, may instead belong to a different flow regime, 

making unsuitable the use of a vapor-only Nusselt number for comparison purposes. 
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Figure 8 Experimental versus predicted Nusselt numbers, separated by flow pattern. Convective (a) and nucleative (b) 

boiling contribution for bubbly, slug, stratified-wavy and intermittent flow data. Convective (c) and nucleative (d) 

boiling contribution for annular flow data. (e) Convective contribution for dryout data. (f) Convective (vapor) 

contribution for mist flow data 

 

b) 

a) 

c) d) 

e) 

f) 
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3.2 Assessment of correlations for smooth tubes 

Several flow boiling heat transfer prediction methods explicitly developed for carbon dioxide in 

smooth micro and macro tubes are available in literature. In this review, 12 models are implemented 

to test their agreement with the experimental data. Unfortunately, missing information in the work 

of Mikielewicz and Jakubowska [71] made their method not possible to implement for this 

assessment. The mathematical formulation and range of validity of the chosen correlations are 

provided in Table 2, whereas their complete assessment is given in Table 3, in which the 

experimental data are segregated according to their flow pattern and in micro/macro scale. The 

statistical analysis is carried-out with the calculation of the Mean Absolute Error (|η|), Mean 

Relative Error (η), percentage of data points falling into an error range of ±30% (Ψ) and of ±50% 

(χ). For each bunch of data, the best three working correlations are highlighted in bold and a 

graphical comparison is also provided in Figure 9a-d. 

The previous section has shown that data belonging to bubbly, slug, stratified-wavy and intermittent 

flow regimes were quite well predicted by only considering the Cooper [67] expression for pure 

pool boiling Nusselt number (Figure 8b), having a calculated MAE of |η|=51%. A better 

agreement is here obtained by implementing the superposition method of Oh et al. [30] (see Figure 

9a), that combines the liquid Dittus-Boelter expression to the Cooper heat transfer coefficient. The 

calculated MAE is |η|=33.3%, with 85% of the points falling in a ±50% error band. Similar good 

agreements are also found with the correlation of Hihara and Tanaka [72] (|η|=35.3%) and the 

superposition model of Choi et al. (|η|=35.2%). In case of annular flow regime, the best agreement 

is found with the method of Hihara and Tanaka [72] (see Figure 9b), with calculated |η|=27%, 

η=0.9%, ψ=67% and χ=88%, and similar results are obtained with the flow pattern based methods 

of Thome and El-Hajal [35] and of Cheng et al. [36].  

In case of dryout and mist flow, most of the chosen correlations do not work well (ignoring the 

onset of dryout), and only the flow pattern based prediction methods provide a fair accuracy. The 

Thome and El-Hajal model [35] best fits the dryout points, with a calculated |η|=55%, mostly 

underpredicting the experimental heat transfer coefficients (η=-14.6%), as shown in Figure 9c. The 

assessment for the mist flow data gives a lowest |η| of 73%, obtained with the model developed by 

Pettersen [42], that uses an asymptotic approach for the pre-dryout points and the Shah and Siddiqui 

[73] model for the post-dryout heat transfer. The onset of dryout was instead estimated using water 

data from Kon’kov [74] scaled to CO2 with the dimensional analysis method of Ahmad [75]. The 

reason of this very high MAE lies in the group of data close to the x-axis in Figure 9d, that are not 

likely to belong to the mist flow regime, as instead originally sorted using the flow pattern map of 

Cheng et al. [66], whose dryout-mist flow transition criterion should be therefore modified. 
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By considering the entire database, the three best working prediction methods are those of Pettersen 

[42] (|η|=46%), Cheng et al. [36] (|η|=52%) and Thome and El-Hajal [35] (|η|=58%). Their 

accuracy does not significantly change when used for mini or macrochannels, being consistent to 

the similar behavior of small and conventional tubes when the effect of the operating parameters 

was analyzed in the previous section of this review.  
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Table 2 Mathematical expressions of the flow boiling heat transfer prediction methods for pure carbon dioxide in smooth tubes 

Author Formulation Range of applicability 

Hwang et al. [76] 
nb cb

h Sh Eh    

Nucleate boiling heat transfer coefficient     with Forster-Zuber [77] correlation 
0.6

cb L L
h Pr h  , liquid heat transfer coefficient    with Dittus-Boelter [68] correlation 
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Hihara and Tanaka [72] 
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LO
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Yoon et al. [26] 
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For crx x  

 2

2

dry V dry Lh Eh
h

  



 
  , liquid and vapor heat transfer coefficients with Dittus-Boelter [68] equation. 
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Thome and El-Hajal [35]  2
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 
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 , in which the void fraction is obtained with the Rohuani and Axelsson [70] 

model. 
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Pettersen [42] For crx x : 

 
1/3

3 3

nb cbh h h  , with nucleate boiling heat transfer coefficient     evaluated with Cooper [67] equation and 

the convective boiling heat transfer coefficient estimated with Kattan et al. [78] [79] flow pattern based model. 

Post-dryout region ( crx x ) heat transfer coefficient calculated with Shah and Siddiqui [73] model. 

Dryout vapor quality     using Kon’kov [74] expression for H20 and Ahmad [75] fluid-to-fluid scaling model 
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Choi et al. [28] 
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Choi et al. II [29] Same expression as Choi et al. [28], with a different evaluation of the suppression and enhancement factors: 
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Cheng et al. [66] [36] For any flow pattern except dryout and mist flow: 
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Table 3 Assessment of the CO2 flow boiling heat transfer coefficient prediction methods for smooth tubes (along the columns), compared to the experimental database separated 

by the operative conditions (along the rows) 

Author Hwang 

et al. 

[76] 

Hihara 

and 

Tanaka 

[72] 

Yoon et 

al. [26] 
Thome 

and El-

Hajal 

[35] 

Pettersen 

[42] 
Choi et 

al. [28] 
Choi et 

al. II [29] 
Cheng 

et al. 

[66] 

[36] 

Yun and 

Kim [25] 
Oh et al. 

[30] 
Pamitran 

et al. [80] 
Ducoulombier 

et al. [47] 

Bubbly, 

stratified-wavy, 

slug, intermittent 

flow regimes 

|η|=162 

η=160 

ψ=14.8 

χ=27.4 

|η|=35.3 

η=-11.5 

ψ=51.5 

χ=81.9 

|η|=49.0 

η=23.8 

ψ=51.4 

χ=70.9 

|η|=59.2 

η=50.4 

ψ=45.6 

χ=65.7 

|η|=36.5 

η=20.5 

ψ=63.3 

χ=80.2 

|η|=35.2 

η=16.9 

ψ=62.1 

χ=79.2 

|η|=36.9 

η=2.03 

ψ=52.5 

χ=83.2 

|η|=56.2 

η=43.8 

ψ=56.5 

χ=73.8 

|η|=45.9 

η=-14.5 

ψ=44.3 

χ=66.0 

|η|=33.3 

η=-2.26 

ψ=57.1 

χ=85.2 

|η|=71.1 

η=-70.6 

ψ=5.88 

χ=12.1 

|η|=38.5 

η=26.9 

ψ=60.6 

χ=77.2 

Annular flow 

regime 

|η|=116 

η=113 

ψ=28.9 

χ=42.2 

|η|=27.0 

η=0.92 

ψ=67.0 

χ=87.9 

|η|=31.6 

η=4.86 

ψ=58.5 

χ=83.6 

|η|=27.7 

η=-12.8 

ψ=60.1 

χ=89.5 

|η|=33.2 

η=4.00 

ψ=59.2 

χ=83.3 

|η|=33.2 

η=15.2 

ψ=61.8 

χ=80.1 

|η|=31.7 

η=-15.1 

ψ=49.6 

χ=86.4 

|η|=31.6 

η=5.84 

ψ=60.8 

χ=85.6 

|η|=73.0 

η=-53.9 

ψ=20.0 

χ=27.0 

|η|=35.2 

η=-15.9 

ψ=43.0 

χ=73.1 

|η|=78.7 

η=-78.7 

ψ=0.19 

χ=2.26 

|η|=32.2 

η=19.2 

ψ=65.3 

χ=81.5 

Dryout flow 

regime 

|η|=157 

η=151 

ψ=38.9 

χ=44.9 

|η|=92.4 

η=86.2 

ψ=48.6 

χ=58.5 

|η|=67.3 

η=12.2 

ψ=30.2 

χ=57.9 

|η|=55.2 

η=-14.6 

ψ=23.6 

χ=62.6 

|η|=61.8 

η=-25.2 

ψ=18.7 

χ=47.5 

|η|=88.2 

η=72.2 

ψ=41.8 

χ=58.5 

|η|=63.3 

η=22.8 

ψ=34.2 

χ=72.7 

|η|=61.3 

η=-30.1 

ψ=21.3 

χ=39.9 

|η|=85.6 

η=-81.1 

ψ=3.88 

χ=5.88 

|η|=71.2 

η=20.4 

ψ=26.5 

χ=51.9 

|η|=74.1 

η=-66.5 

ψ=3.88 

χ=10.9 

|η|=84.9 

η=78.2 

ψ=51.3 

χ=59.2 

Mist flow regime |η|=255 

η=251 

ψ=28.5 

χ=34.7 

|η|=251 

η=249 

ψ=20.2 

χ=28.6 

|η|=171 

η=124 

ψ=18.4 

χ=33.7 

|η|=135 

η=87.7 

ψ=18.0 

χ=41.6 

|η|=72.7 

η=-1.87 

ψ=17.1 

χ=40.9 

|η|=233 

η=226 

ψ=27.9 

χ=35.9 

|η|=200 

η=178 

ψ=21.9 

χ=42.8 

|η|=90.7 

η=-46.4 

ψ=7.91 

χ=12.6 

|η|=78.9 

η=-50.7 

ψ=8.74 

χ=17.0 

|η|=201 

η=168 

ψ=16.8 

χ=34.4 

|η|=96.6 

η=-0.99 

ψ=9.05 

χ=17.3 

|η|=238 

η=235 

ψ=24.6 

χ=31.9 

Macro-channels 

(Co<0.5) 

|η|=212 

η=210 

ψ=12.0 

χ=19.5 

|η|=82.6 

η=58.1 

ψ=43.6 

χ=65.7 

|η|=67.9 

η=40.9 

ψ=46.8 

χ=69.9 

|η|=55.6 

η=19.2 

ψ=47.2 

χ=74.2 

|η|=47.5 

η=8.69 

ψ=41.7 

χ=61.6 

|η|=86.6 

η=75.8 

ψ=40.6 

χ=57.8 

|η|=65.0 

η=36.2 

ψ=48.9 

χ=73.7 

|η|=52.4 

η=21.5 

ψ=44.4 

χ=66.0 

|η|=57.6 

η=-26.5 

ψ=31.3 

χ=44.4 

|η|=65.1 

η=38.5 

ψ=50.9 

χ=72.9 

|η|=80.4 

η=-61.9 

ψ=2.71 

χ=7.80 

|η|=88.3 

η=80.4 

ψ=40.2 

χ=58.2 

Micro-channels 

(Co>0.5) 

|η|=87.7 

η=82.2 

ψ=48.3 

χ=62.7 

|η|=76.9 

η=58.3 

ψ=64.4 

χ=78.3 

|η|=63.0 

η=18.1 

ψ=43.3 

χ=66.0 

|η|=60.9 

η=13.5 

ψ=39.6 

χ=69.5 

|η|=43.4 

η=-8.82 

ψ=53.3 

χ=78.7 

|η|=70.0 

η=47.8 

ψ=67.2 

χ=81.6 

|η|=73.0 

η=20.7 

ψ=34.4 

χ=77.9 

|η|=50.5 

η=-33.0 

ψ=43.4 

χ=58.8 

|η|=89.1 

η=-82.1 

ψ=4.51 

χ=8.12 

|η|=78.7 

η=10.1 

ψ=21.5 

χ=54.3 

|η|=79.6 

η=-60.3 

ψ=4.12 

χ=8.25 

|η|=68.6 

η=56.5 

ψ=72.7 

χ=80.2 

Overall database |η|=157 

η=153 

ψ=28.1 

χ=38.7 

|η|=80.0 

η=58.2 

ψ=52.9 

χ=71.3 

|η|=65.7 

η=30.8 

ψ=45.3 

χ=68.2 

|η|=58.0 

η=16.7 

ψ=43.8 

χ=72.1 

|η|=45.7 

η=0.91 

ψ=45.5 

χ=69.2 

|η|=79.1 

η=63.4 

ψ=52.4 

χ=68.4 

|η|=68.6 

η=29.3 

ψ=42.5 

χ=75.6 

|η|=51.6 

η=-2.87 

ψ=44.0 

χ=62.8 

|η|=71.6 

η=-51.2 

ψ=19.4 

χ=28.3 

|η|=71.1 

η=25.9 

ψ=37.8 

χ=64.6 

|η|=80.0 

η=-61.2 

ψ=3.34 

χ=8.00 

|η|=79.5 

η=69.7 

ψ=54.6 

χ=68.0 
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Figure 9 Experimental versus predicted heat transfer coefficients for smooth tubes according to the best working 

correlations, separated by flow pattern. 

4. Boiling of CO2 in enhanced surfaces and with the presence of oil 

4.1 Experimental database for microfin tubes 

The research has highlighted 10 flow boiling studies in microfinned surfaces using pure carbon 

dioxide as working fluid, from 2005 until 2015, by collecting a total amount of 883 heat transfer 

coefficient data. The whole database is shown in Table 4: tests have been performed with different 

kinds of geometrical characteristics, covering mass fluxes from 75 to 800 kg/m
2
s, saturation 

temperatures from -30 to +20 °C, heat fluxes from 1.67 to 61 kW/m
2
, with and single/multi tube 

diameters from 0.8 mm to 11.2 mm. All the experiments have been conducted in circular and 

horizontal channels.  

Schael and Kind [52] performed CO2 flow boiling experiments with a microfin 8.62 mm tube made 

up of 60 fins with a 18° helix angle. The authors observed that convection was promoted by the 

helical grooves, with increasing heat transfer coefficients with mass flux. On the other hand, the 

bubble formation was seen to be suppressed. 

c) 

a) b) 

d) 
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Microfin tubes with similar geometrical characteristics were investigated by Cho et al. [53] [54], 

together with smooth pipes having the same internal diameters. The heat transfer coefficients in the 

microfin channels were found 150-210% higher than those in the smooth tubes at the same test 

conditions. The authors attributed this behavior to a larger heated surface and a promoted annular 

flow regime by means of the fin structure. 

Gao et al. [56] performed a comprehensive investigation on flow boiling of carbon dioxide in 

smooth and enhanced tubes of 3 mm ID, with and without the presence of oil. In case of pure CO2, 

the heat transfer coefficients showed a strong dependency on heat flux and a negligible influence of 

the mass velocity for both smooth and microfin tube. Indeed, dryout vapor quality was seen to 

decrease with mass flux in the smooth channel, whereas no changes were observed in the enhanced 

tube. 

A peculiar grooved multi-port test section was tested by Jeong and Park [43], made up of 8 

minichannels with an internal diameter of 0.8 mm, together with a similar structure having 6 

smooth narrow circular tubes for comparison purposes. Some details of this test section are shown 

in Figure 10a. It was found that at lower vapor qualities (x<0.3), the heat transfer was considerably 

enhanced by the micro-grooves (+320%), especially in case of high saturation temperatures. At 

higher qualities, however, the grooves showed a negative effect on the heat transfer coefficient. A 

multi-microfin tube test section with zero helix angle was also used by Wu et al. [44] in their 

investigation on flow boiling heat transfer and pressure drop with pure CO2. The authors reported a 

significant influence of the heat flux and of the saturation temperature, which increased the heat 

transfer coefficient but also tended to anticipate the onset of dryout.  

Dang et al. [81] studied the effect of the operating parameters in a with a 2 mm microfin tube, 

whose picture is shown in Figure 10b. The heat transfer coefficients were also compared to the 

values obtained in a smooth tube at the same operating conditions, as presented in Figure 11a. It 

was found that the use of fins was able to enhance the turbulence of the liquid phase, conveyed 

further in the tube and thus delaying the dryout occurrence with respect to the smooth tube. 

A similar behavior was found by Zhao and Bansal [82], that performed flow boiling experiments in 

a 7.31 mm microfin tube at a single low saturation temperature of -30 °C, thus working with a 

reduced pressure similar to that of halogenated refrigerants at higher temperatures.  

Finally, Kim et al. [83], in their 11.2 mm microfin tube, found that the carbon dioxide heat transfer 

coefficient trend with vapor quality was altered by the presence of fins, as shown in Figure 11b. The 

authors stated that the internal tube peculiar structure was able to drive the liquid phase in the 

grooves, thus anticipating the appearance of the annular flow regime and providing a convective 

behavior. This was also corroborated by the flow patterns observations carried out in their work. 
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Figure 10 Examples of enhanced surfaces for flow boiling of CO2. (a) Grooved multi-port test section of Jeong and 

Park [43] and reference smooth multi-port mini-tubes. Measurements are in mm. (b) Single microfin tube of Dang et al. 

[81] 

Table 4 Experimental databank for boiling of CO2 in enhanced tubes 

Author Geometry* Internal 

diameter 

[mm] 

Mass 

velocity 

[kg m-2 

s-1] 

Heat flux 

[kWm-2] 

Saturation 

temperature 

[°C] 

Number 

of points 

Schael and 

Kind [52] 

S,C,H microfinned: 

Fin height=0.25mm 

Helix angle=18° 

Fins=60 

Fin tip angle=30° 

8.62 75/500 3.9/61 5 30 

Cho et al. [53] 

[54] 

S,C,H microfinned: 

Fin height=0.15mm 

Helix angle=18° 

Fins=60 

4.4/8.92 212/656 6/30 -5/20 200 

Gao et al. [56] S,C,H microfinned: 

Fin height=0.11mm 

Helix angle=12° 

Fins=40 

Fin tip angle=40.5° 

3.04 190/770 10/30 10 71 

Jeong and 

Park [43] 

M,C,H grooved: 

depth=0.1mm 

width=0.2 

0.8 400/800 12/18 0/10 51 

Dang et al. 

[81]  

S,C,H microfinned: 

Fin height=0.12mm 

Helix angle=6.3° 

Fins=40 

Fin tip angle=34.8° 

2 360/720 4.5/18 15 185 

Ono et al. [61] S,C,H microfinned: 

Fin height=0.11mm 

Helix angle=12° 

Fins=50 

Fin tip angle=40° 

3.75 190/380 10/30 10 58 

Zhao and 

Bansal [82] 

S,C,H microfinned: 

Fin height=0.20mm 

Helix angle=18° 

Fins=50 

Fin tip angle=52° 

7.31 100/250 9.9/30 -30 82 

Kim et al. [83] S,C,H microfinned: 

Helix angle=30° 

Fins=68 

11.2 100/200 10 -15 11 

Wu et al. [44] M,C,H microfinned: 

Fin height=0.16mm 

Helix angle=0° 

Fins=13 

Fin tip angle=30 

1.7 100/600 1.67/8.33 1/15 195 

Overall  0.8/11.2 75/800 1.67/61 -30/20 883 

*M=multi, S=single; C=circular, R=rectangular; H=horizontal, V=vertical 

 

a) b) 
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Figure 11 Effect of the microfin structure on flow boiling heat transfer of CO2. (a) Heat transfer enhancement and 

delayed dryout. Data from Dang et al. [81]. (b) Improved convection. Data from Kim et al. [83] 

 

4.2 Heat transfer for CO2/oil mixtures in smooth tubes 

The presence of oil in refrigeration systems is often required for a correct lubrication of the 

operating devices. The choice of a suitable oil is always a demanding issue, and in case of carbon 

dioxide it is complicated by its higher reduced pressure and peculiar physical properties. In terms of 

miscibility, the following lubricants are expected [6] to provide the highest solubility, in decreasing 

order: POE, ester oils, PVE, PAG, AB, POA and mineral oil (CO2 is immiscible with mineral 

lubricants). Nevertheless, most of the reports available do not cover wide ranges of temperature 

and/or concentration and the phase equilibrium and thermodynamic properties behavior are strictly 

associated to the operating conditions and the type of oil employed. Seeton et al. [84] found that 

PAG, AB and PAO lubricants were not miscible with CO2 at high refrigerant concentrations, 

whereas POE oil provided complete miscibility in the range -20/+120 °C. Hauk and Weidner [85], 

instead, observed the coexistence of two liquid phases for three different oils (POE, PAG and PAO) 

over a range of 5/100 °C. Whichever lubricant chosen, during the normal operation of a 

refrigeration system a non-negligible amount of oil may drift from the compressor moving parts to 

the heat exchangers, altering the heat transfer behavior of the working fluid because of the 

modification of the thermodynamic and transport properties for the mixture. 

Wang et al. [86] published a comprehensive review to summarize the general trends of the lubricant 

presence on the evaporating heat transfer coefficient of halogenated refrigerants and CO2. They 

concluded that the influence of oil depends not only on its concentration, but also on the heat flux, 

mass flux and other operating parameters. As a fact, it is difficult to provide general indications due 

to the large difference of properties in the available commercial lubricants, and different studies 

may therefore provide inconsistencies. 

b) a) 
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Table 5 summarizes the flow boiling heat transfer coefficient data for CO2/oil mixtures in smooth 

tubes collected for this review. PAG and POE type lubricants have been used for nominal mass 

concentrations    from 0.1% to 5% in tubes of diameters from 2 to 11.2 mm in different operating 

conditions in terms of mass flux (from 100 to 1400 kg/m
2
s), saturation temperature (from -30 to 15 

°C) and heat flux (from 0.5 to 36 kW/m
2
), for a total amount of 1184 data points. All the 

experiments refer to single, circular and horizontal tubes. 

In the study of Gao et al. [56], performed with PAG oil in a 3.0 mm tube, the CO2 local heat 

transfer coefficients were seen to decrease with vapor quality and they were considerably lower for 

oil concentrations higher than 0.11%. The authors also found PAG oil to be immiscible or only 

partially miscible with carbon dioxide for their operating conditions. 

Pehlivanoglu et al. [59] pointed out that the presence of lubricant strongly reduced the nucleative 

boiling contribution, as shown in their experimental data in Figure 12a at moderate heat and mass 

fluxes, in which the heat transfer coefficient passes from approximately 9 kW/m
2
K up to 7.5 

kW/m
2
K (-18%) when a small nominal oil mass fraction of 2% is considered. This behavior can be 

explained with the simultaneous significant increase of the saturation temperature and of the liquid 

surface tension for the refrigerant/oil mixture, both penalizing the bubble nucleation with a higher 

superheat required with respect to the pure fluid at the same operating conditions. Similar trends 

and strong penalizations of the nucleate boiling heat transfer coefficient with increasing oil 

concentration are also found in most of the data collected [57] [61] [62]. It is important to remark 

that the increase of the saturation temperature for the oil/CO2 mixture leads to an intrinsic error in 

the data reduction procedure. For all the experimental studies reviewed, in fact, the flow boiling 

heat transfer coefficient is obtained according to Equation (8), thus incorrectly using the saturation 

temperature of the pure carbon dioxide. 

 
wall sat

q
h

T T



  (8) 

As suggested by Thome et al. [87] [88], one should use instead the mixture saturation temperature 

Tsat,m as shown in Equation (9), which could significantly increase with proceeding evaporation, as a 

function of the local oil mass concentration, defined in Equation (10). 

 
,wall sat m

q
h

T T



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 0
,

1
oil x
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
 


  (10) 



37 

 

However, as experimented by [89] and [90], the saturation temperature remains almost unchanged 

with both POE and PAG lubricants up to local oil mass concentrations of 50-70%, that are reached, 

for the present database (   ≤ 5%), only at very high vapor qualities (x > 0.90). 

In some cases, a positive effect of the presence of oil for high vapor qualities has been observed, as 

shown in Figure 12c for the data of Kim et al. [60] with POE lubricant in a 11.2 mm tube. In case of 

pure CO2, the low mass flux of 100 kg/m
2
s leads to a decreasing heat transfer coefficient trend with 

vapor quality for pure CO2, due to the growth of the dryout region on the top of the tube in a 

stratified flow. When oil is added, the higher liquid surface tension of the mixture tends to increase 

the wetted fraction of the tube wall, thus shaping an annular flow and a convective heat transfer 

behavior. 

Table 5 Experimental databank for boiling of CO2 in smooth tubes with the presence of oil 

Author Geometry* Internal 

diameter 

[mm] 

Mass 

velocity 

[kg m-2 

s-1] 

Heat flux 

[kW m-2] 

Saturation 

temperature 

[°C] 

Oil 

mass 

fraction 

[%] 

Oil type Number 

of points 

Gao et al. [56] S,C,H 3 193/1094 10/20 10 0.11/0.5

7 

PAG 45 

Katsuta et al. 

[57] 

S,C,H 3 400 5/15 0/10 0.3/3.5 PAG 

VG100 

164 

Pehlivanoglu et 

al. [59] 

S,C,H 6.1 100/400 2/15 -30/-15 0.5/2 POE 

C85 

179 

Kim et al. [60] 

[83] 

S,C,H 11.2 100/200 0.5/10 -15 0.5/2 POE 

RENSIO 

C85 

117 

Ono et al. [61] S,C,H 3.76 100/380 10/30 10/10 0.1/1 PAG 151 

Dang et al. [62] S,C,H 2/6 360/1440 4.5/36 15 0.5/5 PAG 

100 

528 

Overall 2/11.2 100/1440 0.5/36 -30/15 0.1/5  1184 

*M=multi, S=single; C=circular, R=rectangular; H=horizontal, V=vertical 

 

   

Figure 12 Effect of lubricating oil on flow boiling heat transfer of CO2. (a) Reduction of the nucleative boiling 

contribution. Data from Pehlivanoglu et al. [59]. (b) Slight enhancement of convection. Data from Kim et al. [60]  

b) a) 
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5. Assessment of prediction methods for enhanced surfaces and oil effect 

5.1 Nucleate and convective boiling contributions 

Figure 13a-e presents a bar chart distribution for both databases including microfin tubes and 

smooth tubes with the presence of oil. 883 data points in enhanced surfaces and 1184 heat transfer 

coefficient values for CO2/oil mixtures are segregated into different categories according to their 

operating conditions, in terms of tube internal diameter, mass flux, saturation temperature, heat flux 

and nominal oil mass fraction   . For the microfin tube database, a consistent amount of 

experimental points are collected with diameters of 1.7 and 2.0 mm (43% of the entire databank) 

and for the saturation temperatures of 15 °C (35% of the databank), all belonging to the studies of 

Wu et al. [44] and of Dang et al. [81]. As for the CO2/oil heat transfer coefficient data, remarkable 

peaks are found for saturation temperatures of -15 °C, 10 °C and 15 °C and for imposed heat fluxes 

of 10, 18 and 36 kW/m
2
, due to the comprehensive experimental investigation of Dang et al. [62] 

that represents alone the 45% of the entire CO2/oil collected database. Finally, more than 550 points 

are taken at a nominal oil mass fraction of 1.0%, including both synthetic PAG and POE lubricants. 
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Figure 13 Distribution of data points for flow boiling of CO2 in enhanced tubes and in smooth tubes with the presence 

of lubricating oil, related to: (a) internal diameter; (b) mass flux; (c) saturation temperature; (d) imposed heat flux; (e) 

nominal oil mass fraction 

The experimental Nusselt numbers of the two databases are compared with both nucleate and 

convective Nusselt, respectively from Equations (1) and (7) in Figure 14a-b, as previously 

presented for conventional geometries and pure carbon dioxide. As already pointed out, the heat 

transfer coefficients in microfin tubes can be considerably higher than those obtained in an 

b) a) 

c) d) 

e) 
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equivalent smooth geometry, mainly due to the increased heat transfer surface and also to a higher 

turbulence of the liquid in the tube with a subsequent enhancement of the heat transfer convection 

efficiency. As a consequence, the experimental Nusselts calculated in enhanced tubes (black 

circular markers) are significantly underestimated by considering either only convection or only 

nucleation, and therefore specific heat transfer prediction methods should instead be employed. In 

case of CO2/oil mixtures, the experimental Nusselt numbers (red diamond markers in Figure 14) are 

lower than the corresponding values calculated for only convective and only nucleative Nusselt 

values, implying a non-negligible penalization with respect to the flow boiling in smooth tubes with 

pure carbon dioxide. In fact, the two-phase heat transfer coefficient is altered by the presence of 

lubricant that affects both convective and nucleate boiling contributions, as also shown in Figure 12. 

From one side, bubble nucleation and growth tend to be suppressed due to the simultaneous 

increase of the saturation temperature and the surface tension of the liquid mixture. However, as 

suggested by Thome [91], this effect can be partially compensated with foaming, that increases the 

nucleation phenomenon. As regards the convective contribution, although the increase of the 

surface tension might delay the onset of dryout (which occurs at low vapor qualities in case of CO2) 

through an increased wettability, the higher viscosity of the mixture liquid phase greatly penalizes 

the flow velocity and thus convective heat transfer. 

 

Figure 14 Experimental versus predicted Nusselt numbers, for enhanced tubes and CO2/oil mixtures. Comparison with 

convective (a) and nucleate (b) boiling contribution 

 

5.2 Assessment of methods: enhanced tubes 

To the best of our knowledge, the only flow boiling heat transfer prediction method explicitly 

developed for microfin tubes (with 0° helix angle) and carbon dioxide as working fluid is that of 

Wu et al. [44]. Before the dryout region, the heat transfer coefficient was calculated using the same 

b) a) 
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expression of Yoon et al. [26], by introducing the fin height Hfin as supplementary geometrical 

parameter, as shown in Equation (11): 

 

963 5

7 82

, 1 4
1

cr

CCC C
fin C CC sat

Wu x x LO L L
tt

L fin

GHP d
h C Bo C Re Pr h

X H



 


                         

  (11) 

where      is the Reynolds number evaluated for liquid-only flow,    is the liquid Dittus-Boelter 

heat transfer coefficient and   is the liquid film thickness that must be calculated in the hypothesis 

of symmetric annular flow (Equation (4)), by employing the void fraction from Rohuani and 

Axelsson [70] expression. The nine coefficients from    to    were fitted by the experimental data, 

obtaining, respectively: 0.0077, 2.1, 1.1, 25, 0.41, -1.3, 0.82, 0.45 and -0.11. In the post-dryout 

region the heat transfer coefficient was instead correlated to the dry angle and the wet and vapor 

heat transfer coefficients values, as shown in the following Equation (12): 

 
 

,

2

2cr

dry V dry wet

Wu x x

h h
h

  




 
   (12) 

where    is the Dittus-Boelter vapor heat transfer coefficient and the dry angle is a function of the 

vapor Reynolds, Boiling and Bond numbers: 

 32 4

1
2

dry DD D

LD Re Bo Bd



   (13) 

The recommended values for the four coefficients from    to    are 0.37, 0.29, 0.23 and -0.46. The 

heat transfer coefficient of the wet portion must be evaluated with Equation (11), in which the 

liquid film thickness   is calculated with the following expression: 

 
1

1 1
2

1
2

dry

d 






 
 
   
 

 
 

  (14) 

Finally, the dryout vapor quality was correlated to the liquid Reynolds, Boiling and Bond numbers 

and to the ratios of liquid and vapor density and viscosity as follows: 

 

65

32 4

1

EE

EE E V L
cr L

L V

x E Re Bo Bd
 

 

  
   

   
  (15) 
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The fitted coefficients from    to    were, respectively: 1.3, -0.24, -0.11, 0.00095, 1.1 and 1.1. This 

correlation was entirely calibrated on the multi-minichannel microfin tube tested by the authors [44] 

and was intended to cover mass fluxes from 100 to 600 kg/m
2
s, heat fluxes from 1.67 to 8.33 

kW/m
2
 and saturation temperatures from 1 to 15 °C.  

The agreement between this correlation and the entire database for enhanced tubes is shown in 

Figure 15a. Although this prediction method includes the effect of the enhanced channel 

characteristics through the fin height, it largely fails to capture the experimental data (with a 

calculated MAE of 163%) and works quite well only for the authors’ own database, as shown in 

Figure 15b, in which 92% of the data are predicted within an error band of ±50%. 

 

Figure 15 Experimental versus predicted heat transfer coefficients for enhanced surfaces. Correlation of Wu et al. [44] 

applied to: (a) All the collected data for enhanced surfaces. (b) Wu et al. [44] database 

 

5.3 Assessment of methods: oil effect 

Four different flow boiling heat transfer coefficient correlations developed for CO2/PAG oil 

mixtures in smooth tubes are considered for this review. Most of the methods use a typical flow 

boiling structure, such as either a superposition or an asymptotic model, with an adjustment of the 

nucleate boiling suppression factor by considering the oil properties and and/or its concentration in 

the evaporating flow. A summary of the mathematical expressions of the four prediction methods is 

given in Table 6. 

Aiyoshizawa et al. [92] proposed a typical superposition model in which the convection 

enhancement and the boiling suppression factors were calibrated on the experimental data of Dang 

et al. [62] for carbon dioxide and PAG oil. The simplicity of this method consists in the use of the 

pure CO2 physical properties, whereas the presence of lubricant is taken into account only with the 

normal oil normal boiling point temperature       . 

b) 
a) 



43 

 

Gao et al. [93] developed a flow boiling heat transfer coefficient prediction method for oil/CO2 

mixures based on their own experimental data for carbon dioxide and PAG oil. The same equations 

of Cheng et al. [66] [36] were employed for their asymptotic model, except for the additional 

suppression factor related to the vapor quality. 

Katsuta et al. [57] employed a superposition model in which the nucleate boiling contribution was 

additionally penalized by the factor   depending on the nominal oil mass fraction.  

Finally, Li et al. [94] developed an asymptotic method for flow boiling of carbon dioxide with 

entrained PAG oil for smooth horizontal tubes in the pre-dryout region. The thermodynamic 

properties labeled with the subscript m refer to the oil/refrigerant mixture. For their evaluation, a 

comprehensive set of equations can be found in the original references [94]. 
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Table 6 Mathematical expressions of the flow boiling heat transfer prediction methods for carbon dioxide and lubricants mixtures in smooth tubes 

Author Equations Range of validity 

Aiyoshizawa et al. 

[92] L nb
h Eh Sh  , liquid heat transfer coefficient with Dittus-Boelter equation 

0.745 0.581

0.533
207 Pr

b V L

nb L

L b L b

qD
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T D

 

 
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   
   
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2
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 

 



  

Gao et al. [93] Same equations of the Cheng et al. [66] [36] model, with an additional suppression factor 

 
1/3

3 3
'

nb cb
h S h h      
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Katsuta et al. [57] 
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h Eh Sh     
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 , with      taken from Aiyoshizawa et al. [92] 
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Li et al. [94] 
 

1/3
3 3

nb m
h Sh Eh    , nucleate boiling heat transfer coefficient from Forster and Zuber [77] and    

from Dittus-Boelter equation. Both of them must be calculated with the properties of the CO2/oil mixture, 

as recommended in [94] 
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The assessment of the CO2/oil flow boiling prediction methods with the individual works and for 

the entire collected database is provided in Table 7. The calculated errors are quite high in any case, 

but the correlations of Aiyoshizawa et al. [92] and of Gao et al. [93] provide a discrete agreement 

with almost all the single databases, with overall calculated MAE of 73.7% and 63.2%, 

respectively. The graphical comparison of these two prediction methods is shown in Figure 16a-b, 

in which it is clear the large scatter for a considerable amount of points, especially those obtained 

for higher nominal oil mass fractions (defined by the color bar). The correlation of Katsuta et al. 

[57] works particularly well with the data collected from Pehlivanoglu et al. [59] and from Kim et 

al. [60] [83], together with the authors’ own database, but largely fails in the other cases. The 

remaining prediction method of Li et al. [94] greatly overestimates all the experimental heat transfer 

coefficients, providing an overall relative error of +165%. 

 

Table 7 Assessment of the CO2 flow boiling heat transfer coefficient prediction methods for smooth tubes in the 

presence of oil (along the columns), compared to the individual experimental database (along the rows) 

Author Aiyoshizawa et al. [92] Gao et al. 

[93] 
Katsuta et al. 

[57] 

Li et al. [94] 

Gao et al. [56] |η|=108 

η=94.5 

ψ=71 
χ=71 

|η|=45.4 

η=32.2 

ψ=73 
χ=82 

|η|=300 

η=300 

ψ=4.4 
χ=4.4 

|η|=202 

η=191 

ψ=0 
χ=8.9 

Katsuta et al. [57] |η|=48.2 

η=15.7 

ψ=54 
χ=79 

|η|=130 

η=130 

ψ=0 
χ=8.5 

|η|=39.8 

η=8.2 

ψ=62 
χ=77 

|η|=162 

η=160 

ψ=17 
χ=26 

Pehlivanoglu et al. 

[59] 

|η|=54.2 

η=-50.5 
ψ=17 

χ=34 

|η|=54.4 

η=-52.2 
ψ=21 

χ=33 

|η|=31.1 

η=-30.4 
ψ=34 

χ=99 

|η|=70 

η=36.8 
ψ=34 

χ=53 

Kim et al. [60] [83] |η|=54.6 

η=-50 
ψ=9.4 

χ=26 

|η|=56.9 

η=-55.8 
ψ=6 

χ=33 

|η|=24.1 

η=-24.1 
ψ=65.8 

χ=97 

|η|=61 

η=34.1 
ψ=39.3 

χ=62 

Ono et al. [61] |η|=76.1 
η=58.7 

ψ=68 

χ=78 

|η|=43.6 
η=11.9 

ψ=62 

χ=80 

|η|=226 
η=226 

ψ=0 

χ=0 

|η|=170 
η=155 

ψ=4.6 

χ=8 

Dang et al. [62] |η|=89 
η=85.6 

ψ=68 
χ=70 

|η|=82 
η=75.7 

ψ=43 
χ=55 

|η|=312 
η=312 

ψ=0 
χ=0 

|η|=242 
η=242 

ψ=0.4 
χ=2.3 

Overall database 

with oil 

|η|=73.7 

η=38.8 

ψ=52.4 

χ=62.4 

|η|=63.2 

η=24.2 

ψ=42.2 

χ=56.9 

|η|=204 

η=190 

ψ=11.9 

χ=26.1 

|η|=176 

η=165 

ψ=12.2 

χ=20.1 
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Figure 16 Experimental versus predicted heat transfer coefficients with the presence of oil for the entire database 

presented in Table 5. The color bar refers to the initial oil mass fraction. (a) Correlation of Gao et al. [93]. (b) 

Correlation of Aiyoshizawa et al. [92] 

6. Conclusions 

A comprehensive review of flow boiling heat transfer of carbon dioxide has been presented in this 

paper. The review addresses flow boiling experimental studies in smooth and enhanced tubes with 

pure CO2 and CO2/lubricant mixtures, collecting more than 7000 heat transfer coefficient data 

points and analyzing the main trends with operating conditions. The experimental Nusselt numbers 

are compared to the nucleate and convective contribution for each data set and the assessment of 

existing prediction methods explicitly developed for carbon dioxide is finally carried out. The main 

outcomes of this review are summarized as follows: 

 By considering the macro-to-micro scale transition criterion of Kew and Cornwell [21], 

there are no significant differences in the flow boiling behavior of pure CO2 in smooth 

tubes. Pure convective (h increasing only with vapor quality and mass flux) and pure 

nucleative (h increasing only with saturation temperature and heat flux) trends can in fact be 

both found either for small and conventional channels, depending on the operating 

conditions explored. 

 Data from smooth tubes and pure CO2 are segregated into different flow patterns according 

to the flow pattern map of Cheng et al. [66]. Points belonging to bubbly, intermittent, 

stratified-wavy and slug flow are fairly fitted by considering a pure nucleate boiling 

contribution (MAE = 51%), expressed by the Cooper [67] correlation for pool boiling heat 

transfer. Annular flow data are instead not fairly predicted with either only convection or 

only nucleation heat transfer  

b) a) 
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 Among the twelve CO2-related heat transfer coefficient prediction methods available in 

literature for smooth tubes, the superposition model of Oh et al. [30] best predicts data 

belonging to bubbly, slug, intermittent and stratified-wavy flow, with a calculated MAE of 

33.3%. In case of annular flow regime, the best agreement is found with the method of 

Hihara and Tanaka [72], with a calculated MAE of 27%. Although carrying higher errors, 

the flow pattern based methods of Thome and El-Hajal [35] and of Pettersen [42] best fit the 

dryout and mist flow experimental heat transfer coefficients, respectively. By considering 

the entire database, the Pettersen [42] method provides the lowest MAE of 46%, with similar 

accuracy for both micro and macro scale. 

 Generally, with respect to smooth tubes at the same operating conditions, the two-phase heat 

transfer coefficients in microfin tubes are considerably higher. It was observed that the 

increased turbulence generated by the microfin structure is able to drive the liquid phase in 

the grooves, thus anticipating the appearance of the annular flow regime, providing at the 

same time a more convective behavior and a delayed dryout occurrence. The only available 

prediction method of Wu et al. [44] strongly overestimates the collected database for 

enhanced tubes, with an overall MAE of 163%. 

 The presence of lubricant negatively affects both the convective and nucleate boiling heat 

transfer contributions of carbon dioxide, with a significant suppression of the bubble 

nucleation and an increased flow viscosity. On the other hand, it was observed that the 

higher surface tension of the mixture increases the stability of the liquid film and may delay 

the onset of dryout. Among the four CO2/oil flow boiling heat transfer prediction methods, 

the correlations of Aiyoshizawa et al. [92] and of Gao et al. [93] provide the best agreement, 

even if the deviations are quite high (MAE of 73.7% and 63.2%, respectively). 
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