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Abstract. The purpose of this paper is to present new flow boiling heat transfer and pressure 

drop data in a single, horizontal smooth stainless steel tube of 6.0 mm internal diameter, in 

which R32 and R290 (propane) are employed as working fluids. The cross sectional average 

heat transfer coefficients are obtained by measuring the temperatures at the top, bottom, left 

and right sides of the channel. The experimental trends are analyzed for different operating 

conditions in terms of mass velocity (from 150 to 300 kg/(m
2
 s)) and heat flux (from 10 to 40 

kW/m
2
). The saturation temperature is fixed to 25 °C for the heat transfer data and to 25 and 35 

°C for the pressure drop experiments. The effects of the operative parameters and of the 

working fluids on local heat transfer coefficients and frictional pressure drop are discussed and 

the experimental data are finally compared with some of the available correlations taken from 

scientific literature. 

 

1.  Introduction 

The correct design of evaporators in domestic and commercial air conditioning and refrigeration 

systems continuously requests flow boiling heat transfer and pressure drop data, especially in case of 

low-GWP refrigerants that are about to replace the conventional HFC substances [1]. Propane (R290) 

might be an interesting alternative thanks to its excellent thermodynamic and transport properties and 

miscibility with usual compressor lubricants. Nevertheless, its use is often restricted to small plants 

with low fluid inventory due to its high flammability. On the other hand, R32 is currently used in 

residential and industrial air-conditioning systems as a substitute for R410A and it is also expected to 

be a component of R32/HFO mixtures in the next future [2]. 

Although the flammability of R290 and R32 may represent a safety issue, the latent heat of these 

fluids is almost double of that of typical synthetic refrigerants, thus allowing the use of a considerably 

reduced mass flow rate required compared to HFCs fluids for the same amount of heat duty without 

affecting the system performance. On this regard, Mastrullo et al. [3] proposed R290 as working fluid 

in a light vertical freezer for commercial applications. The authors found that the refrigerant charge 

could be kept below the limits allowed by the current standards and also that the overall performance 

was increased with respect to the baseline configuration with refrigerant R410A. Later on, Fernando et 

al. [4] found that a 5 kW water-to-water heat pump could be run with only 200 g of propane without 
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any penalization on the system performance when compared to a conventional design. Botticella et al. 

[2], in their multi-criteria optimization of a residential split system heat pump, found that refrigerant 

R32 is the most promising solution in terms of manufacturing costs, consumers’ costs and 

environmental impact. Another research performed by Xu et al. [5] has pointed out that the coefficient 

of performance (COP) using R32 in a vapor-injected heat pump was increased up to 10% if compared 

to the R410A case operating under the same conditions. 

Despite the wide range of possible applications for R290 and R32 as working fluids has been 

demonstrated, limited amount of heat transfer and pressure drop data are currently available in 

scientific literature. Recently, Longo et al. [6] provided flow boiling data of pure R290, propylene and 

R404A in a circular tube of 4.0 mm, exploring saturation temperatures from 5 to 20 °C, mass fluxes 

from 104 to 313 kg/(m2 s) and heat fluxes from 15 to 31 kW/m2. The authors found a nucleate boiling 

prevalent behaviour, with heat transfer coefficients not affected by a change of vapor quality 

especially at low mass fluxes and high heat fluxes and saturation temperatures.  

Wang et al. [7] performed flow boiling experiments with R290 in a 6.0 mm horizontal tube, with 

low saturation temperatures (from -35 to -2 °C) and low mass fluxes (from 62 to 104 kg/(m2 s)). The 

heat transfer performance was seen to be increased with mass flux at high vapor qualities and with 

saturation temperature at high heat fluxes, which positively affected the heat transfer coefficients in 

any condition. 

For smaller pipes, Del Col et al. [8] studied flow boiling heat transfer and pressure drop of R290 in 

a 0.96 mm channel at a fixed saturation temperature of 31 °C. All the prediction methods chosen by 

the authors underestimated the heat transfer coefficient trends. 

Flow boiling of R32 in a 4.0 mm internal diameter horizontal tube has been experimentally 

investigated by Longo et al. [9] for three saturation temperatures (5, 10 and 20 °C). The heat transfer 

coefficient was seen to be nearly independent on vapor quality and mass flux, whereas a higher 

sensitivity for heat flux variations was observed, especially at higher saturation temperatures. 

Jige et al. [10] investigated the effect of the tube diameter on flow boiling heat transfer and 

pressure drop of R32 in small channels of 1.0, 2.2 and 3.5 mm internal diameters, at a fixed saturation 

temperature of 15 °C and by varying heat and mass flux. No differences were found on the heat 

transfer mechanisms with respect to conventional macro-tubes, and the heat transfer coefficients were 

seen to be higher with lower internal diameters under the same experimental conditions. Higher 

pressure drops were instead recorded for lower tube diameters and higher mass fluxes.  

In this paper, new flow boiling heat transfer coefficient and pressure drop data of R290 and R32 are 

provided in a horizontal stainless steel tube of 6.0 mm internal diameter. Experiments were performed 

by investigating the effect of the operating parameters in terms of mass flux (from 150 to 300 kg/(m2 

s)) and heat flux (from 10 to 40 kW/m2). The saturation temperature has been fixed to 25 °C for the 

heat transfer experiments and to 25 and 35 °C for the adiabatic frictional pressure gradient tests. 

Finally, the agreement with some prediction methods is also checked. 

 

2.  Experimental facility 

The test facility for the flow boiling heat transfer and pressure drop experiments is schematically 

shown in Fig. 1, in which the refrigerant loop and the water cooling loop are displayed as black and 

blue lines, respectively. 

The sub-cooled refrigerant passes through a magnetic gear pump, which is able to provide 

volumetric flow rates within a range of 1.3-2.5 dm3/min by changing its rotating speed. The liquid 

mass flow rate is then measured by a Coriolis flow meter before the preheater section, which is made 

up of a copper tube where the heat is provided by means of four fiberglass heating tapes (each one 

with a nominal heat power of 900 W at 25 °C and 240 V). For the control of the local vapor quality at 

the test section inlet, the applied heat at the preheater section is managed thanks to a solid state relay 

and with the help of Arduino One controller. An adiabatic horizontal portion (40 cm) of stainless steel 

tube is provided in order to let the fluid be fully developed before the test section inlet. The saturated 
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vapor is then condensed in a plate heat exchanger and finally sub-cooled in a tube-in-tube heat 

exchanger before the pump suction head that closes the loop. Two different throttling valves are 

positioned on the liquid and vapor lines, respectively, and a bypass circuit is provided at the pump 

outlet in order to have multiple mass flow rate control options.  

Demineralized water is the cooling fluid, whose temperature is controlled by a thermostatic bath. 

Both the tube-in-tube and the plate heat exchangers may be independently excluded from the water 

flow by means of two dedicated bypass circuits.  

 

 

Figure 1. Schematic description of the experimental facility 

2.1.  Test section  

All the flow boiling experiments have been conducted in a smooth, horizontal, circular stainless steel 

(AISI SS316) tube having an internal diameter of 6.00 ±0.05 mm and an external diameter of 8.00 
±0.05 mm. According to the tube manufacturer, the roughness of the inner surface is 10 μm. A 

photograph and the main characteristics of the tube test section are provided in Fig. 2. The heat flux is 

obtained by means of Joule effect provided by a DC power supply unit (within the range 0-8 V and 0-

300 A) connected to the test section with two shorts copper wires clamped on copper electrodes 

welded on the tube surface (see points A and E in Fig. 2). The total measured heated length is 

193.7±0.79 mm. At a distance of 237.5±0.91 mm, two pressure taps (points P and R) are provided for 

the measurement of the inlet absolute pressure and of the pressure drop across the test section. The 

local heat transfer coefficient is measured in the position C, at a distance of 146.7 ±0.64 mm from the 

inlet section. In this point, four T-type thermocouples are glued on the tube external surface with a 

high-conductivity epoxy resin, whereas a Kapton thin adhesive layer guarantees the electrical 

insulation from the heated channel [11]. The DC voltage for the evaluation of the imposed heat flux is 

measured between the position B and D in order to avoid locally concentrated tension drops in the 

electrodes proximity. Different layers of synthetic foam (  = 0.040 W/(m K)) are used for the 

insulation of the test section and of the entire test facility, with the exception of the preheater section, 

which has been firstly covered with two layers of mineral wool (  = 0.070 W/(m K)) due to the higher 

temperatures reached during the experimental procedure. 
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Geometrical features 

A, E copper electrodes 

B, D voltage measurement points 

C temperature measurement point 

AE 193.7 ±0.79 mm 

BD 101.6 ±0.41 mm 

AC 146.7 ±0.64 mm 

d 
6.00 ±0.05 mm (internal 

diameter) 

D 8.00 ±0.05 mm (outer diameter) 

PR 
237.5 ±0.91 mm (pressure taps 

distance) 

PC 166.9 ±0.91 mm 

 

Figure 2. Photograph and geometrical details of the test section 

2.2.  Measurement instrumentation  

Different RTDs are placed throughout the main and secondary loops for the measurement of the fluid 
temperature, carrying an overall uncertainty of ±0.180 °C. The wall temperature measurements for the 

evaluation of the heat transfer coefficients are instead obtained with four T-type thermocouples, 

calibrated in-situ with two resistance thermometers and a thermostatic bath. The overall estimated 

uncertainty for these sensors, by taking into account also the residual errors of the calibration curve, is 
assumed to be ±0.1 °C. 

The absolute pressure at the test section inlet is measured with an absolute pressure transducer 
having a measuring range of 0-35 bar and an overall uncertainty of ±0.5% of the read value. The 

pressure drop is instead estimated with a differential pressure transducer, calibrated in-situ with a 
water liquid column and a yardstick. The instrumental uncertainty is estimated to be ±0.06 kPa. 

The mass flow rate is measured by means of a Coriolis flow meter, calibrated up to 2% of the full 
scale, with a maximum uncertainty of ±1% of the measurement. 

A digital wattmeter provides the heat applied to the preheater section, by separately measuring the 
voltage (100 mV-500 V) and current (1 mA-16 A). Its uncertainty is ±1.0% of the reading, as provided 

by the manufacturer. 

The heat flux applied to the test section requires the measurement of the DC voltage (electrical 
voltage transducer within 0-5 V and an uncertainty of ±0.03% of the reading) and the DC current 

(directly measured by the DC power unit within 0-300 A and an uncertainty of ±1.0%). 

2.3.  Experimental procedure  

The operating parameters in terms of mass flux, saturation temperature and heat flux are fixed at the 

beginning of each experiment, which starts from the onset of boiling and proceeds with increasing 

vapor quality up to the occurrence of dry-out, by means of the AC voltage applied to the fiberglass 

heating tapes of the preheater section. The test is stopped once the dry-out heat transfer is established 

(as soon as the heat transfer coefficient drops more than 25% from its previous value) and the wide 

wall temperature fluctuations would not guarantee high-quality experimental data.  

The thermostatic bath control defines the saturation temperature of the system, whereas the inverter 

frequency of the electrical motor coupled with the magnetic gear pump changes the mass flow rate, 

which can be furtherly controlled by using the bypass circuit and/or the throttling valves on the liquid 

and vapor lines. Finally, the heat flux is imposed by setting the desired voltage of the DC power 

supply unit. 
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All the data are obtained in steady state conditions (with the exception of the dry-out points in 

which the phenomenon itself is time-dependent), with a recording frequency of 1.0 Hz. The nominal 

values of each sample are the arithmetic average of the measured quantities over a recording time of 

90 s. The system is considered stabilized when the calculated deviation of the main parameters is 

sufficiently low (±2% for the mass velocity, ±0.1 °C for the saturation temperature). 

 

3.  Experimental method 

3.1.  Data reduction, uncertainty analysis and validation 

The local heat transfer coefficient and the imposed heat flux are evaluated as follows: 

 

 
wall sat
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where the subscripts wall and sat refer to the inner wall temperature and the local saturation 

temperature, respectively. The cross sectional average heat transfer coefficient shown in the results 

section is the arithmetical average of the four heat transfer coefficients obtained on the top, bottom, 

left and right sides of the test tube. VBD is the voltage applied in the section BD, I is the DC current 

flowing in the test tube and d is the channel internal diameter. The fluid saturation temperature at the 

measurement point is obtained by considering a linear pressure drop profile from the tube inlet. The 

wall temperature is instead evaluated from the measured wall outer temperature     by considering 1-

D heat transfer and uniform generation in the metal tube having       (16.26 W/(m K)) as thermal 

conductivity and D as external diameter: 
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The local vapour quality at the measurement point requires the knowledge of the local enthalpy, 

which is computable with an energy balance applied to the test section: 
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where G is the refrigerant mass flux and     is the test section inlet enthalpy, whose value is obtained 

from an energy balance applied to the preheater section, in which          is the preheater inlet 

enthalpy of the sub-cooled liquid,        is the preheater load and    is the refrigerant measured mass 

flow rate. 
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All refrigerant thermodynamic properties are evaluated with the software REFPROP 9.0, whereas 

the whole data reduction is carried out with MATLAB software. 

 

3.2.  Uncertainty analysis and validation 

The instrumental B-type uncertainties are composed to the standard deviation evaluated in the 

recording time for all the measured parameters. The uncertainty analysis of the derived results is then 

carried out by using the law of propagation of errors [11]-[12]. The maximum uncertainties are 

typically detected at the dry-out occurrence due to the higher fluctuations of the measured parameters. 

Lower uncertainty values are instead recorded during stable boiling. Tab. 1 shows the maximum and 

the average recorded uncertainty for the main operating parameters and results. 

 

Table 1 Summary of the uncertainty analysis  

Parameter Average uncertainty Maximum uncertainty 

Saturation temperature Tsat ±0.05 °C ±0.08 °C 

Mass flux G ±1.1% ±3.5% 

Heat flux q ±0.70% ±0.76% 

Vapor quality x ±0.04 ±0.19 

Mean heat transfer coefficient 

hmean 
±7.5% ±16% 

Pressure gradient 
  

  
 ±1.8% ±11% 

 

The preheater and test section insulation and the correct functioning of the whole experimental 

apparatus have been checked with liquid single-phase experiments by using refrigerant R134a. The 

electrical power (from 220 to 1460 W in the preheater section and from 10 to 150 W in the test 

section) is compared to the heat absorbed by the sub-cooled refrigerant by means of two energy 

balances performed in the heated sections. In all tests, the wall and ambient temperatures reached 

similar values than those obtained during the flow boiling experiments. 

The liquid single-phase heat transfer coefficients for refrigerant R134a are also evaluated and 

compared to the well-known Dittus-Boelter prediction method [13]. Further detailed information on 

the validation procedure and results can be obtained from a previous work of the same authors with 

the same test facility [11].  

 

4.  Results 

4.1.  Heat transfer coefficient: experiments and assessment 

The heat transfer coefficients points presented in this section are intended to be averaged over the four 

measurement points (top, bottom, left and right sides of the tube). The parameters and their 

uncertainties for all the titles and legends in the following diagrams are averaged over all the 

corresponding represented data. 

In this experimental campaign, R32 and R290 are employed as working fluids and the saturation 

temperature has been fixed to 25 °C. Mass fluxes between 150 and 300 kg/(m2 s) and heat fluxes from 

10 to 40 kW/m2 have been investigated and the effect of their variation on the local heat transfer 

coefficients is discussed in the following diagrams. 

Fig. 3 shows the effect of the mass flux on the mean heat transfer coefficient. Fig. 3a refers to 

refrigerant R32 with an imposed heat flux of 10 kW/m2 and Fig. 3b refers to propane (R290) with a 

heat flux of 20 kW/m2. The heat transfer coefficients trends of R32 are different depending on the 
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mass flux: for the lower values of 152 and 223 kg/(m2 s), the heat transfer performance is not 

particularly affected by vapor quality and also by a change of the mass flux itself, even if a slight 

deterioration of the heat transfer coefficient with ongoing evaporation is detected for the lowest mass 

flux investigated. A different trend is shown for the mass flux of 301 kg/(m2 s), in which the heat 

transfer coefficient increases with vapor quality (passing from 6 to 10 kW/(m2 K)) and exposes a 

typical convective behavior. The dry-out phenomenon occurs at higher vapor qualities with increasing 

mass velocity, passing from 0.79 to 0.86 when the mass flux is changed from 152 to 301 kg/(m2 s). 

The trends of R290 are similar to those displayed for refrigerant R32 and are not affected by the 

mass flux and vapor quality variations for all the operating conditions investigated, showing a nearly 

constant value of 9-10 kW/(m2 K) from the onset of boiling up to the dry-out occurrence, which 

happens at approximately x = 0.85 for the three operating conditions shown.  

 

  

Figure 3. Effect of the mass flux on the mean heat transfer coefficient. The saturation temperature is 

fixed to 25 °C. (a) R32 with q = 10 kW/m2; (b) R290 with q = 20 kW/m2. 

 

The effect of the imposed heat flux on the average heat transfer coefficients of R32 and R290 is 

shown in Fig. 4a-b, respectively. At a mass flux of 220 kg/(m2 s) and with refrigerant R32, the heat 

transfer coefficient remains almost constant with ongoing evaporation when the vapor quality is 

included between 0.2 and 0.8 for the three curves shown. At lower vapor qualities, the heat transfer 

coefficient is nearly constant for a heat flux of 10 kW/m2, whereas shows an increasing trend for q = 

20 kW/m2 and a decreasing trend for q = 40 kg/m2. An increasing heat flux determines a significant 

increase of the average heat transfer coefficient (approximately +55% from 10 to 40 kW/m2) at any 

vapor quality, suggesting a strong nucleate heat transfer contribution in these conditions. A higher 

imposed heat flux leads also to a progressive reduction of the vapor quality at the occurrence of dry-

out, passing from 0.93 to 0.78. 

A similar behavior is observed for refrigerant R290 at the same mass flux of 220 kg/(m2 s), for 

which the dry-out occurrence is anticipated from 0.85 to 0.63 with increasing heat flux. For this fluid, 

the convective heat transfer is not completely suppressed due to the slight increase of the heat transfer 

coefficient with increasing vapor quality for all the heat fluxes investigated. The effect of the imposed 

heat flux is anyway more evident employing R290, with the average heat transfer coefficient that is 

almost doubled up when passing from 10 to 40 kW/m2.  

 

a) b) 
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Figure 4. Effect of the heat flux on the mean heat transfer coefficient. The saturation temperature is 

fixed to 25 °C. (a) R32 with G = 220 kg/(m2 s); (b) R290 with G = 220 kg/(m2 s). 

 

The experimental heat transfer coefficient data (including those after dry-out occurrence) are 

finally compared with two correlations taken from scientific literature. Particularly, the prediction 

methods of Wojtan et al. [14] and Del Col [15] are chosen for comparison. The statistic analysis and 

the graphical comparisons have been separately performed with the two refrigerants employed and are 

summarized in Fig. 5a-b. 

The flow pattern based method of Wojtan et al. [14] was developed for macro-tubes by employing 

R410A as operating fluid. It works similarly for both refrigerants, providing a Mean Absolute Error 

(MAE) of 28.1% and 29.8% when applied to R32 and R290 data, respectively. The correlation of Del 

Col [15] is a modification of the original Gungor and Winterton [16] method, adapted for the author’s 

data with halogenated refrigerants in a smooth horizontal tube of 8.0 mm internal diameter. From Fig. 

5b, even if this method provides higher errors for higher heat transfer coefficients, it returns the best 

agreement with the experimental data, with a MAE equal to 19.6% for R32 and to 24.6% for the R290 

heat transfer coefficient points.  

 

  

Figure 5. Experimental versus predicted heat transfer coefficients. Correlations of: (a) Wojtan et al. 

[14]; (b) Del Col [15] 

4.2.  Adiabatic pressure gradients: experiments and assessment 

The effect of the saturation temperature and mass flux on the frictional pressure gradient is shown in 

Fig. 6a-b, respectively. The general trend is an increasing pressure drop with vapor quality, due to the 

flow acceleration, and then a decreasing trend after a peak value. For both fluids, an increase of the 

saturation temperature leads to a higher vapor phase density which in turn reduces the shear stress 

a) b) 

b) a) 
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between the two phases, resulting in a slight reduction of the pressure drop, especially in case of high 

vapor qualities, where the flow velocity is more substantial. For the same reason, the frictional 

pressure gradients of R32 (reduced pressure of 0.29 at 25 °C) are lower than those of R290 at the same 

operating conditions (reduced pressure of 0.22 at 25 °C). 

The pressure drop is also significantly increased with mass flux due to a higher flow mean velocity 

and inertia: at x = 0.8, the pressure gradient of R32 at 35 °C for G = 301 kg/m2 s is approximately 

450% higher than that obtained for G = 151 kg/(m2 s). Similar trends with mass velocity are also found 

for refrigerant R290. 

The experimental frictional pressure drop data are finally compared with the values obtained from 

the separated flow models of Zhang and Webb [17] and Friedel [18]. The graphical comparison is 

shown in Fig. 7a-b, with different markers for the two fluids. The correlation of Zhang and Webb [17] 

better predicts the R32 data, with a calculated MAE of 21.5%, whereas for R290 the agreement is 

slightly worse (MAE = 27.8%). On the other hand, the model of Friedel [18] provides a lower MAE 

(equal to 21.4%) for the R290 data, whereas tends to overestimate most of the R32 points (MAE = 

41.7% and MRE = +38.5%). 

 

  

Figure 6. Experimental adiabatic frictional pressure gradients. (a) Saturation temperature effect for 

both fluids at G= 150 kg/(m2 s); (b) Mass flux effect for R32 at Tsat = 35 °C 

 

  

Figure 7. Experimental versus predicted frictional pressure gradients. Correlations of: (a) Zhang and 

Webb [17]; (b) Friedel [18] 

 

5.  Conclusions 

New experimental data on local two-phase heat transfer coefficients and adiabatic pressure gradients 

for refrigerants R32 and R290 are obtained for a horizontal stainless steel tube of 6.0 mm internal 

a) b) 

a) b) 
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diameter. The effects of the heat and mass flux (from 10 to 40 kW/m2 and from 150 to 300 kg/(m2 s), 

respectively) on the heat transfer coefficient and of the mass flux and saturation temperature (fixed to 

25 and 35 °C) on the frictional pressure gradients are investigated. The main conclusions may be 

summarized as follows: 

 The heat transfer coefficients of R290 present an almost constant trend with vapor quality and 

are not affected by a change of the mass flux, suggesting that the convective heat transfer 

contribution plays a minor role in these conditions. Similar trends are found for refrigerant 

R32, in which a typical convective behavior is observed only for the highest mass flux of 300 

kg/(m2 s). An increasing heat flux leads instead to a significant enhancement of the average 

heat transfer coefficients (+55% for R32 and +130% for R290 when passing from 10 to 40 

kW/m2), and also to a reduced vapor quality corresponding to the onset of dry-out.  

 The two-phase heat transfer coefficient prediction method of Del Col [15] returns the best 

agreement when compared to the experimental data, providing a MAE of 19.6% and 24.6% 

when used with R32 and R290 points, respectively. 

 When the same operating conditions are applied, the adiabatic frictional pressure gradients of 

R32 are lower (approximately three times) than those of R290, due to the higher reduced 

pressure that increases the vapor-to-liquid density ratio, reducing the shear stress between the 

two phases. For the same reason, the pressure drops of both fluids are lower with increasing 

saturation temperature. As expected, a higher mass flux provides instead a higher frictional 

pressure gradient, due an increased flow velocity and inertia. 

 The two-phase frictional pressure drop correlation of Zhang and Webb [17] better predicts the 

R32 data (MAE = 21.5%, whereas the prediction method of Friedel [18] returns the best 

agreement with R290 experimental points (MAE = 21.4%). 
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