22 research outputs found

    Renal Tumor Invasion Depth and Diameter are the Two Most Accurate Anatomical Features Regarding the Choice of Radical Versus Partial Nephrectomy

    Get PDF
    Background and Aims: To evaluate simple tumor characteristics (renal tumor diameter and parenchymal invasion depth) compared with more complex classifications, that is, Renal Tumor Invasion Index (RTII) and Preoperative Aspects and Dimensions Used for an Anatomical classification, in predicting the type of nephrectomy (radical vs partial) performed. Material and Methods: A total of 915 patients who had undergone either partial nephrectomy (n=388, 42%) or radical nephrectomy (n=527, 58%) were identified from the Helsinki University Hospital kidney tumor database between 1 January 2006 and 31 December 2014. Tumor maximum diameter and depth of invasion into the parenchyma were estimated from computed tomography or magnetic resonance imaging images and compared with Preoperative Aspects and Dimensions Used for an Anatomical and Renal Tumor Invasion Index. Logistic regression and receiver operating curves were used to compare the parameters at predicting the type of nephrectomy. Results and conclusion: All the anatomical variables of receiver operating curve/area under the curve analyses were significant predictors for the type of nephrectomy. Parenchymal invasion (area under the curve 0.91; 95% confidence interval, 0.89-0.93), RTII (area under the curve 0.91; 95% confidence interval, 0.89-0.93), and diameter (area under the curve 0.91; 95% confidence interval, 0.89-0.93) performed significantly better than Preoperative Aspects and Dimensions Used for an Anatomical classification (area under the curve 0.88; 95% confidence interval, 0.85-0.89). In multivariable analysis, invasion depth was the best predictor of nephrectomy type (percentage correct, 85.6%). Addition of one anatomic parameter into the model of non-anatomical cofactors improved the accuracy of the model significantly, but the addition of more parameters did not. Parenchymal invasion depth and tumor diameter are the most accurate anatomical features for predicting the nephrectomy type. All potential anatomical classification systems should be tested against these two simple characteristics.Peer reviewe

    Candidiasis, Bacterial Vaginosis, Trichomoniasis and Other Vaginal Conditions Affecting the Vulva

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Increased cancer risk in heavy drinkers with the alcohol dehydrogenase 1C*1 allele, possibly due to salivary acetaldehyde

    No full text
    Background: Chronic ethanol consumption is associated with an increased risk of upper aerodigestive tract cancer. As acetaldehyde seems to be a carcinogenic factor associated with chronic alcohol consumption, alcoholics with the alcohol dehydrogenase (ADH) 1C*1 allele seem to be particularly at risk as this allele encodes for a rapidly ethanol metabolising enzyme leading to increased acetaldehyde levels. Recent epidemiological studies resulted in contradictory results and therefore we have investigated ADH1C genotypes in heavy alcohol consumers only. Methods: We analysed the ADH1C genotype in 107 heavy drinkers with upper aerodigestive tract cancer and in 103 age matched alcoholic controls without cancer who consumed similar amounts of alcohol. Genotyping of the ADH1C locus was performed using polymerase chain reaction based on restriction fragment length polymorphism methods on leucocyte DNA. In addition, ethanol was administered orally (0.3 g/kg body weight) to 21 healthy volunteers with the ADH1C*1,1, ADH1C*1,2, and ADH1C*2,2 genotypes, and 12 volunteers with various ADH genotypes consumed ethanol ad libitum (mean 211 (29) g). Subsequently, salivary acetaldehyde concentrations were measured by gas chromatography or high performance liquid chromatography. Results: The allele frequency of the ADH1C*1 allele was found to be significantly increased in heavy drinkers with upper aerodigestive tract cancer compared with age matched alcoholic controls without cancer (61.7% v 49.0%; p = 0.011). The unadjusted and adjusted odds ratios for all cancer cases versus all alcoholic controls were 1.67 and 1.69, respectively. Healthy volunteers homozygous for the ADH1C*1 allele had higher salivary acetaldehyde concentrations following alcohol ingestion than volunteers heterozygous for ADH1C (p = 0.056) or homozygous for ADH1C*2 (p = 0.011). Conclusions: These data demonstrate that heavy drinkers homozygous for the ADH1C*1 allele have a predisposition to develop upper aerodigestive tract cancer, possibly due to elevated salivary acetaldehyde levels following alcohol consumption
    corecore