15 research outputs found

    Hypoxia-induced Autophagy Drives Colorectal Cancer Initiation and Progression by Activating the PRKC/PKC-EZR (Ezrin) Pathway

    Get PDF
    In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously established, TIC-enriched patient-derived colorectal cancer (CRC) cultures, we show that hypoxia increases the self-renewal capacity of TICs while inducing proliferation arrest in their more differentiated counterpart cultures. Gene expression data revealed macroautophagy/autophagy as one of the major pathways induced by hypoxia in TICs. Interestingly, hypoxia-induced autophagy was found to induce phosphorylation of EZR (ezrin) at Thr567 residue, which could be reversed by knocking down ATG5, BNIP3, BNIP3L, or BECN1. Furthermore, we identified PRKCA/PKCα as a potential kinase involved in hypoxia-induced autophagy-mediated TIC self-renewal. Genetic targeting of autophagy or pharmacological inhibition of PRKC/PKC and EZR resulted in decreased tumor-initiating potential of TICs. In addition, we observed significantly reduced in vivo tumor initiation and growth after a stable knockdown of ATG5. Analysis of human CRC samples showed that p-EZR is often present in TICs located in the hypoxic and autophagic regions of the tumor. Altogether, our results establish the hypoxia-autophagy-PKC-EZR signaling axis as a novel regulatory mechanism of TIC self-renewal and CRC progression. Autophagy inhibition might thus represent a promising therapeutic strategy for cancer patients

    Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells

    Get PDF
    Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase-cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a 'folate trap'. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.In this study, Green, Marttila, Kiweler et al. characterize one-carbon metabolism rewiring in response to a dual MTHFD1 and MTHFD2 inhibitor. This work provides insight into one-carbon fluxes, and reveals a previously uncharacterized vulnerability in cancer cells created by folate trapping

    Recent hydrological variability and extreme precipitation events in Moroccan Middle-Atlas mountains: micro-scale analyses of lacustrine sediments

    No full text
    International audienceSince the 1990s, the Mediterranean basin undergoes an increase in precipitation events and extreme droughts likely to intensify in the XXI century, and whose origin is attributable to human activities since 1850 (IPCC, 2013). Regional climate models indicate a strengthening of flood episodes at the end of the XXI century in Morocco (Tramblay et al, 2012). To understand recent hydrological and paleohydrological variability in North Africa, our study focuses on the macro- and micro-scale analysis of sedimentary sequences from Lake Azigza (Moroccan Middle Atlas Mountains) covering the last few centuries. This lake is relevant since local site monitoring revealed that lake water table levels were correlated with precipitation regime (Adallal R., PhD Thesis in progress). The aim of our study is to distinguish sedimentary facies characteristic of low and high lake levels, in order to reconstruct past dry and wet periods during the last two hundred years. Here, we present results from sedimentological (lithology, grain size, microstructures under thin sections), geochemical (XRF) and physical (radiography) analyses on short sedimentary cores (64 cm long) taken into the deep basin of Lake Azigza (30 meters water depth). Cores have been dated (radionuclides 210Pb, 137Cs, and 14C dating). Two main facies were distinguished: one organic-rich facies composed of wood fragments, several reworked layers and characterized by Mn peaks; and a second facies composed of terrigenous clastic sediments, without wood nor reworked layers, and characterized by Fe, Ti, Si and K peaks. The first facies is interpreted as a high lake level stand. Indeed, the highest paleoshoreline is close to the vegetation, and steeper banks can increase the current velocity, allowing the transport of wood fragments in case of extreme precipitation events. Mn peaks are interpreted as Mn oxides precipitations under well-oxygenated deep waters after runoff events. The second facies is linked to periods of increased detrital input by incising sediments during low lake levels. This interpretation is supported by chronological jumps in this facies (incoherent old 14C ages). Finally, the presence of numerous anhydrous calcium sulfates in the recent low lake level facies supports the observation of a decreasing lake level for the last decades (Flower et al., 1989; Adallal R., PhD Thesis in progress). Our study demonstrates that several lake level changes occurred during the past two hundred years, and highlights the unprecedented lake level drop since the 1980s. Bibliography Flower, R.J., Stevenson, A.C., Dearing, J.A., Foster, I.D., Airey, A., Rippey, B.,Wilson, J.P.F. & Appleby, P.G. (1989). Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1: 293-322. IPCC, AR 5. Climate Change (2013). The physical Science Report. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E. 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change 82-83: 104-114

    Recent hydrological variability and extreme precipitation events in Moroccan Middle-Atlas mountains: micro-scale analyses of lacustrine sediments

    No full text
    International audienceSince the 1990s, the Mediterranean basin undergoes an increase in precipitation events and extreme droughts likely to intensify in the XXI century, and whose origin is attributable to human activities since 1850 (IPCC, 2013). Regional climate models indicate a strengthening of flood episodes at the end of the XXI century in Morocco (Tramblay et al, 2012). To understand recent hydrological and paleohydrological variability in North Africa, our study focuses on the macro- and micro-scale analysis of sedimentary sequences from Lake Azigza (Moroccan Middle Atlas Mountains) covering the last few centuries. This lake is relevant since local site monitoring revealed that lake water table levels were correlated with precipitation regime (Adallal R., PhD Thesis in progress). The aim of our study is to distinguish sedimentary facies characteristic of low and high lake levels, in order to reconstruct past dry and wet periods during the last two hundred years. Here, we present results from sedimentological (lithology, grain size, microstructures under thin sections), geochemical (XRF) and physical (radiography) analyses on short sedimentary cores (64 cm long) taken into the deep basin of Lake Azigza (30 meters water depth). Cores have been dated (radionuclides 210Pb, 137Cs, and 14C dating). Two main facies were distinguished: one organic-rich facies composed of wood fragments, several reworked layers and characterized by Mn peaks; and a second facies composed of terrigenous clastic sediments, without wood nor reworked layers, and characterized by Fe, Ti, Si and K peaks. The first facies is interpreted as a high lake level stand. Indeed, the highest paleoshoreline is close to the vegetation, and steeper banks can increase the current velocity, allowing the transport of wood fragments in case of extreme precipitation events. Mn peaks are interpreted as Mn oxides precipitations under well-oxygenated deep waters after runoff events. The second facies is linked to periods of increased detrital input by incising sediments during low lake levels. This interpretation is supported by chronological jumps in this facies (incoherent old 14C ages). Finally, the presence of numerous anhydrous calcium sulfates in the recent low lake level facies supports the observation of a decreasing lake level for the last decades (Flower et al., 1989; Adallal R., PhD Thesis in progress). Our study demonstrates that several lake level changes occurred during the past two hundred years, and highlights the unprecedented lake level drop since the 1980s. Bibliography Flower, R.J., Stevenson, A.C., Dearing, J.A., Foster, I.D., Airey, A., Rippey, B.,Wilson, J.P.F. & Appleby, P.G. (1989). Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1: 293-322. IPCC, AR 5. Climate Change (2013). The physical Science Report. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E. 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change 82-83: 104-114

    Recent hydrological variability and extreme precipitation events in Moroccan Middle-Atlas mountains: micro-scale analyses of lacustrine sediments

    No full text
    International audienceSince the 1990s, the Mediterranean basin undergoes an increase in precipitation events and extreme droughts likely to intensify in the XXI century, and whose origin is attributable to human activities since 1850 (IPCC, 2013). Regional climate models indicate a strengthening of flood episodes at the end of the XXI century in Morocco (Tramblay et al, 2012). To understand recent hydrological and paleohydrological variability in North Africa, our study focuses on the macro- and micro-scale analysis of sedimentary sequences from Lake Azigza (Moroccan Middle Atlas Mountains) covering the last few centuries. This lake is relevant since local site monitoring revealed that lake water table levels were correlated with precipitation regime (Adallal R., PhD Thesis in progress). The aim of our study is to distinguish sedimentary facies characteristic of low and high lake levels, in order to reconstruct past dry and wet periods during the last two hundred years. Here, we present results from sedimentological (lithology, grain size, microstructures under thin sections), geochemical (XRF) and physical (radiography) analyses on short sedimentary cores (64 cm long) taken into the deep basin of Lake Azigza (30 meters water depth). Cores have been dated (radionuclides 210Pb, 137Cs, and 14C dating). Two main facies were distinguished: one organic-rich facies composed of wood fragments, several reworked layers and characterized by Mn peaks; and a second facies composed of terrigenous clastic sediments, without wood nor reworked layers, and characterized by Fe, Ti, Si and K peaks. The first facies is interpreted as a high lake level stand. Indeed, the highest paleoshoreline is close to the vegetation, and steeper banks can increase the current velocity, allowing the transport of wood fragments in case of extreme precipitation events. Mn peaks are interpreted as Mn oxides precipitations under well-oxygenated deep waters after runoff events. The second facies is linked to periods of increased detrital input by incising sediments during low lake levels. This interpretation is supported by chronological jumps in this facies (incoherent old 14C ages). Finally, the presence of numerous anhydrous calcium sulfates in the recent low lake level facies supports the observation of a decreasing lake level for the last decades (Flower et al., 1989; Adallal R., PhD Thesis in progress). Our study demonstrates that several lake level changes occurred during the past two hundred years, and highlights the unprecedented lake level drop since the 1980s. Bibliography Flower, R.J., Stevenson, A.C., Dearing, J.A., Foster, I.D., Airey, A., Rippey, B.,Wilson, J.P.F. & Appleby, P.G. (1989). Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1: 293-322. IPCC, AR 5. Climate Change (2013). The physical Science Report. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E. 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change 82-83: 104-114

    Recent hydrological variability and extreme precipitation events in Moroccan Middle-Atlas mountains: micro-scale analyses of lacustrine sediments

    No full text
    International audienceSince the 1990s, the Mediterranean basin undergoes an increase in precipitation events and extreme droughts likely to intensify in the XXI century, and whose origin is attributable to human activities since 1850 (IPCC, 2013). Regional climate models indicate a strengthening of flood episodes at the end of the XXI century in Morocco (Tramblay et al, 2012). To understand recent hydrological and paleohydrological variability in North Africa, our study focuses on the macro- and micro-scale analysis of sedimentary sequences from Lake Azigza (Moroccan Middle Atlas Mountains) covering the last few centuries. This lake is relevant since local site monitoring revealed that lake water table levels were correlated with precipitation regime (Adallal R., PhD Thesis in progress). The aim of our study is to distinguish sedimentary facies characteristic of low and high lake levels, in order to reconstruct past dry and wet periods during the last two hundred years. Here, we present results from sedimentological (lithology, grain size, microstructures under thin sections), geochemical (XRF) and physical (radiography) analyses on short sedimentary cores (64 cm long) taken into the deep basin of Lake Azigza (30 meters water depth). Cores have been dated (radionuclides 210Pb, 137Cs, and 14C dating). Two main facies were distinguished: one organic-rich facies composed of wood fragments, several reworked layers and characterized by Mn peaks; and a second facies composed of terrigenous clastic sediments, without wood nor reworked layers, and characterized by Fe, Ti, Si and K peaks. The first facies is interpreted as a high lake level stand. Indeed, the highest paleoshoreline is close to the vegetation, and steeper banks can increase the current velocity, allowing the transport of wood fragments in case of extreme precipitation events. Mn peaks are interpreted as Mn oxides precipitations under well-oxygenated deep waters after runoff events. The second facies is linked to periods of increased detrital input by incising sediments during low lake levels. This interpretation is supported by chronological jumps in this facies (incoherent old 14C ages). Finally, the presence of numerous anhydrous calcium sulfates in the recent low lake level facies supports the observation of a decreasing lake level for the last decades (Flower et al., 1989; Adallal R., PhD Thesis in progress). Our study demonstrates that several lake level changes occurred during the past two hundred years, and highlights the unprecedented lake level drop since the 1980s. Bibliography Flower, R.J., Stevenson, A.C., Dearing, J.A., Foster, I.D., Airey, A., Rippey, B.,Wilson, J.P.F. & Appleby, P.G. (1989). Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1: 293-322. IPCC, AR 5. Climate Change (2013). The physical Science Report. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E. 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change 82-83: 104-114

    Recent hydrological variability and extreme precipitation events in Moroccan Middle-Atlas mountains: micro-scale analyses of lacustrine sediments

    No full text
    International audienceSince the 1990s, the Mediterranean basin undergoes an increase in precipitation events and extreme droughts likely to intensify in the XXI century, and whose origin is attributable to human activities since 1850 (IPCC, 2013). Regional climate models indicate a strengthening of flood episodes at the end of the XXI century in Morocco (Tramblay et al, 2012). To understand recent hydrological and paleohydrological variability in North Africa, our study focuses on the macro- and micro-scale analysis of sedimentary sequences from Lake Azigza (Moroccan Middle Atlas Mountains) covering the last few centuries. This lake is relevant since local site monitoring revealed that lake water table levels were correlated with precipitation regime (Adallal R., PhD Thesis in progress). The aim of our study is to distinguish sedimentary facies characteristic of low and high lake levels, in order to reconstruct past dry and wet periods during the last two hundred years. Here, we present results from sedimentological (lithology, grain size, microstructures under thin sections), geochemical (XRF) and physical (radiography) analyses on short sedimentary cores (64 cm long) taken into the deep basin of Lake Azigza (30 meters water depth). Cores have been dated (radionuclides 210Pb, 137Cs, and 14C dating). Two main facies were distinguished: one organic-rich facies composed of wood fragments, several reworked layers and characterized by Mn peaks; and a second facies composed of terrigenous clastic sediments, without wood nor reworked layers, and characterized by Fe, Ti, Si and K peaks. The first facies is interpreted as a high lake level stand. Indeed, the highest paleoshoreline is close to the vegetation, and steeper banks can increase the current velocity, allowing the transport of wood fragments in case of extreme precipitation events. Mn peaks are interpreted as Mn oxides precipitations under well-oxygenated deep waters after runoff events. The second facies is linked to periods of increased detrital input by incising sediments during low lake levels. This interpretation is supported by chronological jumps in this facies (incoherent old 14C ages). Finally, the presence of numerous anhydrous calcium sulfates in the recent low lake level facies supports the observation of a decreasing lake level for the last decades (Flower et al., 1989; Adallal R., PhD Thesis in progress). Our study demonstrates that several lake level changes occurred during the past two hundred years, and highlights the unprecedented lake level drop since the 1980s. Bibliography Flower, R.J., Stevenson, A.C., Dearing, J.A., Foster, I.D., Airey, A., Rippey, B.,Wilson, J.P.F. & Appleby, P.G. (1989). Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1: 293-322. IPCC, AR 5. Climate Change (2013). The physical Science Report. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E. 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change 82-83: 104-114

    Past hydrological variability in the Moroccan Middle Atlas inferred from lakes and lacustrine sediments

    No full text
    International audienceThe challenge is to implement research that can estimate the consequences ofclimate changes in terms of impact on terrestrial environments and resources.Emphasis should be placed on regions dependent on natural resources and forwhich demographic pressure is strong. Simulations obtained from climate modelprojections (using different Representative Concentration Pathways (RCPs))predict that the Mediterranean basin and its southern periphery are particularlyvulnerable to water resources and environmental impact (IPCC, AR5, 2013).An annual rainfall decrease by 30% is found for the projection period 2070-2099(IPCC, AR5, 2013) associated with a decrease in water resources by 30 to 50%(Milano, 2012). In addition, several studies using regional atmospheric modelsindicate an increase in the precipitation inter-annual variability with extremeevents and a spatial heterogeneous signature, superimposed on a decrease in thetotal precipitation amount (Giorgi and Lionello, 2008; Raible et al. 2010).Currently, regional climate projections are highly sensitive to the climate modelused. In particular, spatial resolution as well as local climate conditions seemto impact significantly on the simulations (Jacob et al. 2014).The Mediterranean region, at the interface between arid and temperate climateswith several mountainous areas, is a complex climate system affected by theinteractions between mid-latitude and sub-tropical processes. In this context,Morocco, located at the transition between a temperate climate to the North anda tropical climate to the south constitutes a key area for an impact and sensitivitystudy to global climate changes. The climate is influenced by the Atlantic Ocean,the Mediterranean Sea and the Sahara, together with a very steep orography inthe Atlas region. The precipitation distribution is therefore characterised by greatspatial variability, and exhibits a marked seasonality, a strong inter-annualvariability (Ouda et al. 2005) and in general a pronounced gradient from northto south and west to east. At a broader scale, Morocco is located on the subtropicalsubsidence path and between the Acores High and the Saharan Low (Agoussine,2003). Several studies have also identified strong links with inter-annualprecipitation variability and NAO index (Knippertz, 2003) as well as remoteclimate modes (Esper et al. 2007).Continental climate variability at a local/regional scale, if it is to be integratedin climate predictions, needs to be supported by long-term observation.Meteorological stations in Morocco provide climatic data mainly for the last40 years with only a few stations located in the mountainous region (Tramblayet al. 2012; 2013; Driouech et al. 2010). This climate database is also supportedby the IAEA network providing stations for which isotope tracers have beenapplied to daily/monthly rain and water vapour samples over 2 to 3 years between2000 and 2004. Besides the poor coverage of instrumented areas, lacustrinesystems can provide a climatic data set that offers access to short and long-termtime series of climate parameters when knowledge of modern lake water balanceis combined with lacustrine sedimentary-climate records. Lake sediment recordsideally provide high resolution climate/environmental information of the last10,000 years (Magny et al. 2013). This time interval (corresponding to theHolocene) is a key period to investigate short and long-term climate variabilityand to improve prediction in a warming climate.In this study we present an integrated approach focusing on a mountainous lake(Aguelmam Azigza). The modern lake system study is based on site monitoring(2012-2016) and available regional hydro-climatic data. These data show thatlake level changes during the instrumented period were mainly driven byprecipitation following the high inter-annual variability. These data are thencompared with accurately dated short sediment cores retrieved in the same lake.Micro-scale geochemical and sedimentological analyses of these sequencesenable us to identify various sedimentary facies that can be linked with periodsof high (low) lake levels over the past decades

    Sub-chapter 1.1.3. Past hydrological variability in the Moroccan Middle Atlas inferred from lakes and lacustrine sediments

    No full text
    Introduction The challenge is to implement research that can estimate the consequences of climate changes in terms of impact on terrestrial environments and resources. Emphasis should be placed on regions dependent on natural resources and for which demographic pressure is strong. Simulations obtained from climate model projections (using different Representative Concentration Pathways (RCPs)) predict that the Mediterranean basin and its southern periphery are particularly vulnerable to water..
    corecore