3 research outputs found

    Harmonized-Multinational qEEG Norms (HarMNqEEG)

    Get PDF
    This paper extends the frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. ii) We also show that the multinational harmonized Riemannian norms produce z-scores with increased diagnostic accuracy to predict brain dysfunction at school-age produced by malnutrition only in the first year of life. iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings

    3D statistical parametric mapping of EEG source spectra by means of variable resolution electromagnetic tomography (VARETA)

    No full text
    This article describes a new method for 3D QEEG tomography in the frequency domain. A variant of Statistical Parametric Mapping is presented for source log spectra. Sources are estimated by means of a Discrete Spline EEG inverse solution known as Variable Resolution Electromagnetic Tomography (VARETA). Anatomical constraints are incorporated by the use of the Montreal Neurological Institute (MNI) probabilistic brain atlas. Efficient methods are developed for frequency domain VARETA in order to estimate the source spectra for the set of 103–105 voxels that comprise an EEG/MEG inverse solution. High resolution source Z spectra are then defined with respect to the age dependent mean and standard deviations of each voxel, which are summarized as regression equations calculated from the Cuban EEG normative database. The statistical issues involved are addressed by the use of extreme value statistics. Examples are shown that illustrate the potential clinical utility of the methods herein developed. </jats:p
    corecore