72 research outputs found

    Depth and intensity of the sulfate-methane transition zone control sedimentary molybdenum and uranium sequestration in a eutrophic low-salinity setting

    Get PDF
    Molybdenum (Mo) and uranium (U) contents in sedimentary archives are often used to reconstruct past changes in seafloor oxygenation. However, their sequestration processes are as yet poorly constrained in low-salinity coastal waters, which often suffer from anthropogenic eutrophication but only mild oxygen depletion. Due to the consequent lack of robust long-term paleo-redox reconstructions in such settings often characterized by a shallow front of dissolved sulfide accumulation within the sediment pore waters, inadequate understanding of the long-term drivers behind oxygen loss impedes cost-effective mitigation of this environmental problem. Here, we investigate the mechanisms of Mo and U sequestration in an oxic, low-salinity coastal setting in the northern Baltic Sea where anthropogenic eutrophication over the 20th century has resulted in formation of a shallow sulfate-methane transition zone (SMTZ) in the sediment column of this brackish-water basin. Our results demonstrate remarkably similar patterns for authigenic Mo and U sequestration, whereby the depth and intensity of the SMTZ exerts a first-order control on their solid-phase uptake. Sequential extraction analysis suggests that a large part of the authigenic Mo pool is hosted by refractory Fe-S phases such as pyrite and nanoscale FeMoS4, implying that the Fe-sulfide pathway is the dominating process of authigenic Mo scavenging. However, we also observe a pool of extremely labile Mo deep within the SMTZ, which might record an intermediate phase in authigenic Mo sequestration and/or partial switch to the organic matter (OM) pathway at low dissolved Fe levels. Authigenic U resides in acid-extractable and refractory phases, likely reflecting uptake into poorly crystalline monomeric U(IV) and crystalline uraninite, respectively. Similarly to Mo, authigenic U uptake is active at two fronts within the SMTZ, paralleled by increases in dissolved sulfide levels, suggesting coupling between sulfide production and U reduction. Our results imply that both Mo and U could provide viable proxies for mild bottom water deoxygenation in these settings, through the indirect link between seafloor oxygen conditions and the depth of SMTZ. Of these, Mo appears to more robustly capture variations in seafloor oxygen levels due to the significantly higher share of the authigenic pool. However, temporal resolution of these proxies is limited by the vertical offset between seafloor and the zone of authigenic uptake, and the superimposed character of the signal at a given depth due to vertical migrations of the SMTZ. These results have important implications for the use of Mo and U as paleo-redox proxies in other low-salinity coastal settings exposed to eutrophication.Peer reviewe

    Role of particle dynamics in processing of terrestrial nitrogen and phosphorus in the estuarine mixing zone

    Get PDF
    Multiple biogeochemical processes in estuaries modulate the flux of nutrients from land to sea, thus contributing to the coastal filter. The role of particle dynamics in regulating the fate of terrestrial nutrients in estuaries is poorly constrained. To address this issue, we resolved the particle size distribution of suspended material, and quantified size-fractionated particulate nitrogen (PN) and phosphorus (PP), in a stratified mesotrophic estuary (Pojoviken, Finland). We also carried out a mixing experiment where the effects of salt-induced flocculation on particle size distribution and concentrations of PN and PP were examined. The experimental results showed that salt-induced flocculation at already very low salinities increases the total particle concentration and mean particle size, indicating transfer of dissolved material into particulates. Correspondingly, a significant increase in PP and particulate iron (Fe) was observed in the experiment results, suggesting coupled flocculation of P-containing organic matter (OM) and ferrihydrite. Particle dynamics in the field data were dominated by processes occurring downstream of the flocculation zone. Primary production created a downward flux of autochthonous OM particles, promoting passive aggregation by random collisions with terrestrial material in the water column. Maximum particle concentrations were observed at and below the halocline. The highest PN and PP concentrations were observed in the subhalocline layer, 3.5 and 0.14 mu mol L-1, respectively. Molar ratios of N:P in this material were >40, consistent with typical marine snow in the early stages of microbial processing. Our study provides a mechanistic overview of the biogeochemical drivers of particulate nutrient dynamics in stratified estuarine environments.Peer reviewe

    Depth and intensity of the sulfate-methane transition zone control sedimentary molybdenum and uranium sequestration in a eutrophic low-salinity setting

    Get PDF
    Molybdenum (Mo) and uranium (U) contents in sedimentary archives are often used to reconstruct past changes in seafloor oxygenation. However, their sequestration processes are as yet poorly constrained in low-salinity coastal waters, which often suffer from anthropogenic eutrophication but only mild oxygen depletion. Due to the consequent lack of robust long-term paleo-redox reconstructions in such settings often characterized by a shallow front of dissolved sulfide accumulation within the sediment pore waters, inadequate understanding of the long-term drivers behind oxygen loss impedes cost-effective mitigation of this environmental problem. Here, we investigate the mechanisms of Mo and U sequestration in an oxic, low-salinity coastal setting in the northern Baltic Sea where anthropogenic eutrophication over the 20th century has resulted in formation of a shallow sulfate-methane transition zone (SMTZ) in the sediment column of this brackish-water basin. Our results demonstrate remarkably similar patterns for authigenic Mo and U sequestration, whereby the depth and intensity of the SMTZ exerts a first-order control on their solid-phase uptake. Sequential extraction analysis suggests that a large part of the authigenic Mo pool is hosted by refractory Fe–S phases such as pyrite and nanoscale FeMoS4, implying that the Fe-sulfide pathway is the dominating process of authigenic Mo scavenging. However, we also observe a pool of extremely labile Mo deep within the SMTZ, which might record an intermediate phase in authigenic Mo sequestration and/or partial switch to the organic matter (OM) pathway at low dissolved Fe levels. Authigenic U resides in acid-extractable and refractory phases, likely reflecting uptake into poorly crystalline monomeric U(IV) and crystalline uraninite, respectively. Similarly to Mo, authigenic U uptake is active at two fronts within the SMTZ, paralleled by increases in dissolved sulfide levels, suggesting coupling between sulfide production and U reduction. Our results imply that both Mo and U could provide viable proxies for mild bottom water deoxygenation in these settings, through the indirect link between seafloor oxygen conditions and the depth of SMTZ. Of these, Mo appears to more robustly capture variations in seafloor oxygen levels due to the significantly higher share of the authigenic pool. However, temporal resolution of these proxies is limited by the vertical offset between seafloor and the zone of authigenic uptake, and the superimposed character of the signal at a given depth due to vertical migrations of the SMTZ. These results have important implications for the use of Mo and U as paleo-redox proxies in other low-salinity coastal settings exposed to eutrophication.</p

    Using an independent geochronology based on palaeomagnetic secular variation (PSV) and atmospheric Pb deposition to date Baltic Sea sediments and infer 14C reservoir age

    Get PDF
    Dating of sediment cores from the Baltic Sea has proven to be difficult due to uncertainties surrounding the C-14 reservoir age and a scarcity of macrofossils suitable for dating. Here we present the results of multiple dating methods carried out on cores in the Gotland Deep area of the Baltic Sea. Particular emphasis is placed on the Littorina stage (8 ka ago to the present) of the Baltic Sea and possible changes in the C-14 reservoir age of our dated samples. Three geochronological methods are used. Firstly, palaeomagnetic secular variations (PSV) are reconstructed, whereby ages are transferred to PSV features through comparison with varved lake sediment based PSV records. Secondly, lead (Pb) content and stable isotope analysis are used to identify past peaks in anthropogenic atmospheric Pb pollution. Lastly, C-14 determinations were carried out on benthic foraminifera (Elphidium spec.) samples from the brackish Littorina stage of the Baltic Sea. Determinations carried out on smaller samples (as low as 4 mu g C) employed an experimental, state-of-the-art method involving the direct measurement of CO2 from samples by a gas ion source without the need for a graphitisation step - the first time this method has been performed on foraminifera in an applied study. The PSV chronology, based on the uppermost Littorina stage sediments, produced ten age constraints between 6.29 and 1.29 cal ka BP, and the Pb depositional analysis produced two age constraints associated with the Medieval pollution peak. Analysis of PSV data shows that adequate directional data can be derived from both the present Littorina saline phase muds and Baltic Ice Lake stage varved glacial sediments. Ferrimagnetic iron sulphides, most likely authigenic greigite (Fe3S4), present in the intermediate Ancylus Lake freshwater stage sediments acquire a gyroremanent magnetisation during static alternating field (AF) demagnetisation, preventing the identification of a primary natural remanent magnetisation for these sediments. An inferred marine reservoir age offset (Delta R) is calculated by comparing the foraminifera C-14 determinations to a PSV & Pb age model. This Delta R is found to trend towards younger values upwards in the core, possibly due to a gradual change in hydrographic conditions brought about by a reduction in marine water exchange from the open sea due to continued isostatic rebound. (C) 2012 Elsevier Ltd. All rights reserved

    A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century

    Get PDF
    The anthropogenically forced expansion of coastal hypoxia is a major environmental problem affecting coastal ecosystems and biogeochemical cycles throughout the world. The Baltic Sea is a semi-enclosed shelf sea whose central deep basins have been highly prone to deoxygenation during its Holocene history, as shown previously by numerous paleoenvironmental studies. However, long-term data on past fluctuations in the intensity of hypoxia in the coastal zone of the Baltic Sea are largely lacking, despite the significant role of these areas in retaining nutrients derived from the catchment. Here we present a 1500-year multiproxy record of near-bottom water redox changes from the coastal zone of the northern Baltic Sea, encompassing the climatic phases of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the Modern Warm Period (MoWP). Our reconstruction shows that although multicentennial climate variability has modulated the depositional conditions and delivery of organic matter (OM) to the basin the modern aggravation of coastal hypoxia is unprecedented and, in addition to gradual changes in the basin configuration, it must have been forced by excess human-induced nutrient loading. Alongside the anthropogenic nutrient input, the progressive deoxygenation since the beginning of the 1900s was fueled by the combined effects of gradual shoaling of the basin and warming climate, which amplified sediment focusing and increased the vulnerability to hypoxia. Importantly, the eutrophication of coastal waters in our study area began decades earlier than previously thought, leading to a marked aggravation of hypoxia in the 1950s. We find no evidence of similar anthropogenic forcing during the MCA. These results have implications for the assessment of reference conditions for coastal water quality. Furthermore, this study highlights the need for combined use of sedimentological, ichnological, and geochemical proxies in order to robustly reconstruct subtle redox shifts especially in dynamic, non-euxinic coastal settings with strong seasonal contrasts in the bottom water quality.Peer reviewe

    Flocculation of dissolved organic matter controls the distribution of iron in boreal estuarine sediments

    Get PDF
    Iron (Fe) plays a key role in sedimentary diagenetic processes in coastal systems, participating in various redox reactions and influencing the burial of organic carbon. Large amounts of Fe enter the marine environment from boreal river catchments associated with dissolved organic matter (DOM). However, the fate of this Fe pool in estuarine sediments has not been extensively studied. Here we show that flocculation of DOM along salinity gradients in an estuary of the northern Baltic Sea efficiently transfers Fe from the dissolved phase into particulate material that accumulates in the sediments. Consequently, we observe a decline with distance offshore in both the Fe content of the sediments and proportion of terrestrial material in the sedimentary organic matter pool. Mössbauer spectroscopy and sequential extractions suggest that large amounts of Fe in sediments of the upper estuarine zone are associated with organic matter as unsulfidized Fe (II) complexes, or present in the form of ferrihydrite, implying a direct transfer of flocculated material to the sediments. Accordingly, the contribution of these components to the total sedimentary Fe declines with distance offshore while other Fe phases become proportionally more important. Sediment core records show that the observed lateral distribution of Fe minerals has remained similar over recent decades, despite variable Fe inputs from anthropogenic sources and eutrophication of the coastal zone. Pore water data suggest that the vertical zonation of diagenetic processes in the sediments is influenced by both the availability of Fe and by bottom water salinity, which controls the availability of sulfate (SO42−).Output Type: Discussion Pape

    Impact of submarine groundwater discharge on biogeochemistry and microbial communities in pockmarks

    Get PDF
    The impact of submarine groundwater discharge (SGD) on coastal sea biogeochemistry has been demonstrated in many recent studies. However, only a few studies have integrated biogeochemical and microbiological analyses, especially at sites with pockmarks of different degrees of groundwater influence. This study investigated biogeochemical processes and microbial community structure in sediment cores from three pockmarks in Hanko, Finland, in the northern Baltic Sea. Pockmark data were supplemented by groundwater and seawater measurements. Two active pockmarks showed SGD rates of 0.02 cm d-1 and 0.31 cm d-1, respectively, based on porewater Cl- profiles, while a third pockmark had no SGD influence. Reactive transport modelling (RTM) established that the porewater systems of these active pockmarks are dominated by advection, resulting in the focusing of biogeochemical reactions and the microbial community into a thin zone at the sediment surface. The advection further reduces the accumulation of organic matter in the surface sediments, resulting in the absence of a sulfate-methane transition zone (SMTZ) at these pockmarks. Furthermore, the RTM estimated low rates of consumption of SO42-, and low rates of production of CH4, NH4+, DIC at the active pockmarks. Archaeal communities in the active pockmarks were dominated by ammonia-oxidizing archaea of predominantly groundwater origin. In contrast, at the inactive pockmark, the lack of SGD has permitted rapid deposition of organic-rich mud. The porewater system in the inactive pockmark is dominated by diffusion, leading to orders of magnitude higher metabolite concentrations at depth compared to the active pockmarks. The biogeochemical environment in the inactive pockmark resembles typical organic-rich mud seafloor in the area, with sulphate reduction and methanogenesis dominating organic matter remineralization. Accordingly, methanogens dominate the archaeal community, whereas sulfate reducers dominate the bacterial community. RTM results suggest that sulfate-mediated anaerobic oxidation of methane (S-AOM) also occurs at this site. Although depth-integrated fluxes of SO42-, CH4, NH4, DIC at the inactive pockmark are orders of magnitude higher compared to the active pockmarks, processes at the inactive pockmark represent internal recycling in the coastal sea. Fluxes observed at the active pockmarks, although comparatively small in magnitude, are partly influenced by external inputs to the sea through SGD. Hence, effluxes across the sediment-water interface at these sites partly represent direct external fluxes to the marine environment, in addition to diagenetic recycling at the benthic interface. The study highlights that SGD can result in significant spatial heterogeneity of biogeochemical processes and microbial community structure in the coastal zone, and that the overall effects of SGD and associated solute fluxes at an SGD site are a function of the number of pockmarks, the rate of SGD, and the ratio of active to inactive pockmarks.Peer reviewe

    Sedimentary molybdenum and uranium : Improving proxies for deoxygenation in coastal depositional environments

    Get PDF
    Sedimentary molybdenum (Mo) and uranium (U) enrichments are widely used to reconstruct changes in bottom water oxygen conditions in aquatic environments. Until now, most studies using Mo and U have focused on restricted suboxic-euxinic basins and continental margin oxygen minimum zones (OMZs), leaving mildly reducing and oxic (but eutrophic) coastal depositional environments vastly understudied. Currently, it is un-known: (1) to what extent Mo and U enrichment factors (Mo-and U-EFs) can accurately reconstruct oxygen conditions in coastal sites experiencing mild deoxygenation, and (2) to what degree secondary (depositional environmental) factors impact Mo-and U-EFs. Here we investigate 18 coastal sites with varying bottom water redox conditions, which we define by means of five "redox bins", ranging from persistently oxic to persistently euxinic, from a variety of depositional environments. Our results demonstrate that Mo-and U-EF-based redox proxies and sedimentary Mo and U contents can be used to differentiate bottom water oxygen concentration among a range of modern coastal depositional environments. This is underpinned by the contrasting EFs of Mo and U along the redox gradient, which shows a substantial difference of Mo-EFs between redox bins 3-5 (ir/ regularly suboxic - ir/regularly dysoxic - persistently oxic) and of U-EFs between redox bins 1-2 (persistently euxinic - ir/regularly euxinic). Surprisingly, we observe comparatively low redox proxy potential for U in en-vironments of mild deoxygenation (redox bins 3-5). Further, we found that secondary factors can bias Mo-and U-EFs to such an extent that EFs do not reliably reflect bottom water redox conditions. We investigate the impact of limited Mo sedimentary sequestration in sulfidic depositional environments (i.e., the "basin reservoir effect", equilibrium with FeMoS4), Fe/Mn-(oxy)(hydr)oxide "shuttling", oxidative dissolution, the sulfate methane transition zone in the sediment, sedimentation rate, and the local Al background on Mo-and U-EFs.Peer reviewe

    Sedimentary molybdenum and uranium: Improving proxies for deoxygenation in coastal depositional environments

    Get PDF
    Sedimentary molybdenum (Mo) and uranium (U) enrichments are widely used to reconstruct changes in bottom water oxygen conditions in aquatic environments. Until now, most studies using Mo and U have focused on restricted suboxic-euxinic basins and continental margin oxygen minimum zones (OMZs), leaving mildly reducing and oxic (but eutrophic) coastal depositional environments vastly understudied. Currently, it is unknown: (1) to what extent Mo and U enrichment factors (Mo- and U-EFs) can accurately reconstruct oxygen conditions in coastal sites experiencing mild deoxygenation, and (2) to what degree secondary (depositional environmental) factors impact Mo- and U-EFs. Here we investigate 18 coastal sites with varying bottom water redox conditions, which we define by means of five “redox bins”, ranging from persistently oxic to persistently euxinic, from a variety of depositional environments. Our results demonstrate that Mo- and U-EF-based redox proxies and sedimentary Mo and U contents can be used to differentiate bottom water oxygen concentration among a range of modern coastal depositional environments. This is underpinned by the contrasting EFs of Mo and U along the redox gradient, which shows a substantial difference of Mo-EFs between redox bins 3–5 (ir/regularly suboxic – ir/regularly dysoxic – persistently oxic) and of U-EFs between redox bins 1–2 (persistently euxinic – ir/regularly euxinic). Surprisingly, we observe comparatively low redox proxy potential for U in environments of mild deoxygenation (redox bins 3–5). Further, we found that secondary factors can bias Mo-and U-EFs to such an extent that EFs do not reliably reflect bottom water redox conditions. We investigate the impact of limited Mo sedimentary sequestration in sulfidic depositional environments (i.e., the “basin reservoir effect”, equilibrium with FeMoS4), Fe/Mn-(oxy)(hydr)oxide “shuttling”, oxidative dissolution, the sulfate methane transition zone in the sediment, sedimentation rate, and the local Al background on Mo- and U-EFs

    A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century

    Get PDF
    The anthropogenically forced expansion of coastal hypoxia is a major environmental problem affecting coastal ecosystems and biogeochemical cycles throughout the world. The Baltic Sea is a semi-enclosed shelf sea whose central deep basins have been highly prone to deoxygenation during its Holocene history, as shown previously by numerous paleoenvironmental studies. However, long-term data on past fluctuations in the intensity of hypoxia in the coastal zone of the Baltic Sea are largely lacking, despite the significant role of these areas in retaining nutrients derived from the catchment. Here we present a 1500-year multiproxy record of near-bottom water redox changes from the coastal zone of the northern Baltic Sea, encompassing the climatic phases of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the Modern Warm Period (MoWP). Our reconstruction shows that although multicentennial climate variability has modulated the depositional conditions and delivery of organic matter (OM) to the basin the modern aggravation of coastal hypoxia is unprecedented and, in addition to gradual changes in the basin configuration, it must have been forced by excess human-induced nutrient loading. Alongside the anthropogenic nutrient input, the progressive deoxygenation since the beginning of the 1900s was fueled by the combined effects of gradual shoaling of the basin and warming climate, which amplified sediment focusing and increased the vulnerability to hypoxia. Importantly, the eutrophication of coastal waters in our study area began decades earlier than previously thought, leading to a marked aggravation of hypoxia in the 1950s. We find no evidence of similar anthropogenic forcing during the MCA. These results have implications for the assessment of reference conditions for coastal water quality. Furthermore, this study highlights the need for combined use of sedimentological, ichnological, and geochemical proxies in order to robustly reconstruct subtle redox shifts especially in dynamic, non-euxinic coastal settings with strong seasonal contrasts in the bottom water quality.</p
    • 

    corecore