135 research outputs found

    Improving VANET Protocols via Network Science

    Full text link
    Developing routing protocols for Vehicular Ad Hoc Networks (VANETs) is a significant challenge in these large, self- organized and distributed networks. We address this challenge by studying VANETs from a network science perspective to develop solutions that act locally but influence the network performance globally. More specifically, we look at snapshots from highway and urban VANETs of different sizes and vehicle densities, and study parameters such as the node degree distribution, the clustering coefficient and the average shortest path length, in order to better understand the networks' structure and compare it to structures commonly found in large real world networks such as small-world and scale-free networks. We then show how to use this information to improve existing VANET protocols. As an illustrative example, it is shown that, by adding new mechanisms that make use of this information, the overhead of the urban vehicular broadcasting (UV-CAST) protocol can be reduced substantially with no significant performance degradation.Comment: Proceedings of the 2012 IEEE Vehicular Networking Conference (VNC), Korea, November 201

    Comparison of Radio Frequency and Visible Light Propagation Channels for Vehicular Communications

    Get PDF
    Recent research has shown that both radio and visible light waves can be used to enable communications in highly dynamic vehicular environments. However, the roles of these two technologies and how they interact with each other in future vehicular communication systems remain unclear. Understanding the propagation characteristics is an essential step in investigating the benefits and shortcomings of each technology. To this end, we discuss salient properties of radio and visible light propagation channels, including radiation pattern, path loss modeling, noise and interference, and channel time variation. Comparison of these properties provides an important insight that the two communication channels can complement each other’s capabilities in terms of coverage and reliability, thus better satisfying the diverse requirements of future cooperative intelligent transportation systems

    Applications of Blockchain in Business Processes: A Comprehensive Review

    Get PDF
    Blockchain (BC), as an emerging technology, is revolutionizing Business Process Management (BPM) in multiple ways. The main adoption is to serve as a trusted infrastructure to guarantee the trust of collaborations among multiple partners in trustless environments. Especially, BC enables trust of information by using Distributed Ledger Technology (DLT). With the power of smart contracts, BC enforces the obligations of counterparties that transact in a business process (BP) by programming the contracts as transactions. This paper aims to study the state-of-the-art of BC technologies by (1) exploring its applications in BPM with the focus on how BC provides the trust of BPs in their lifecycles; (2) identifying the relations of BPM as the need and BC as the solution with the assessment towards BPM characteristics; (3) discussing the up-to-date progresses of critical BC in BPM; (4) identifying the challenges and research directions for future advancement in the domain. The main conclusions of our comprehensive review are (1) the study of adopting BC in BPM has attracted a great deal of attention that has been evidenced by a rapidly growing number of relevant articles. (2) The paradigms of BPM over Internet of Things (IoT) have been shifted from persistent to transient, from static to dynamic, and from centralized to decentralized, and new enabling technologies are highly demanded to fulfill some emerging functional requirements (FRs) at the stages of design, configuration, diagnosis, and evaluation of BPs in their lifecycles. (3) BC has been intensively studied and proven as a promising solution to assure the trustiness for both of business processes and their executions in decentralized BPM. (4) Most of the reported BC applications are at their primary stages, future research efforts are needed to meet the technical challenges involved in interoperation, determination of trusted entities, confirmation of time-sensitive execution, and support of irreversibility

    Cars as roadside units: a selforganizing network solution

    Get PDF
    Abstract Deploying Roadside Units (RSUs) for increasing the connectivity of vehicular ad hoc networks is deemed necessary for coping with the partial penetration of Dedicated Short Range Communications (DSRC) radios into the market at the initial stages of DSRC deployment. Several factors including cost, complexity, existing systems, and lack of cooperation between government and private sectors have impeded the deployment of RSUs. In this paper, we propose to solve this formidable problem by using a biologically inspired self-organizing network approach whereby certain vehicles serve as RSUs. The proposed solution is based on designing local rules and the corresponding algorithms that implement such local rules. Results show that the proposed approach can increase the message reachability and connectivity substantially

    ASXC2 approach: a service-X cost optimization strategy based on edge orchestration for IIoT.

    Get PDF
    Most computation-intensive industry applications and servers encounter service-reliability challenges due to the limited resource capability of the edge. Achieving quality data fusion and accurate service reliability with optimized service-x execution cost is challenging. While existing systems have taken into account factors such as device service execution, residual resource ratio, and channel condition; the service execution time, cost, and utility ratios of requested services from devices and servers also have a significant impact on service execution cost. To enhance service quality and reliability, we design a 2-step adaptive service-X cost consolidation (ASXC 2) approach. This approach is based on the node-centric Lyapunov method and distributed Markov mechanism, aiming to optimize the service execution error rate during offloading. The node-centric Lyapunov method incorporates cost and utility functions and node-centric features to estimate the service cost before offloading. Additionally, the Markov mechanism-inspired service latency prediction model design assists in mitigating the ratio of offload-service execution errors by establishing a mobility-correlation matrix between devices and servers. In addition, the non-linear programming multi-tenancy heuristic method design help to predict the service preferences for improving the resource utilisation ratio. The simulations show the effectiveness of our approach. The model performance is enhanced with 0.13% service offloading efficiency, 0.82% rate of service completion when transmitting data size is 400 kb, and 0.058% average service offloading efficiency with 40 CPU Megacycles when the vehicle moves 60 Km/h speed around the server communication range. Our model simulations indicate that our approach is highly effective and suitable for lightweight, complex environments

    Efficient LiDAR-trajectory affinity model for autonomous vehicle orchestration.

    Get PDF
    Computation and memory resource management strategies are the backbone of continuous object tracking in intelligent vehicle orchestration. Multi-object tracking generates enormous measurements of targets and extended object positions using light detection and ranging (Lidar) sensors. Designing an adequate object-tracking system is a global challenge because of dynamic object detection and data association uncertainties during scene understanding. In this regard, we develop an intelligent multi-objective tracking (IMOT) system with a novel measurement model, called the box data association inflate (BDAI) model, to assess each target's object state and trajectory without noise by using the Bayesian approach. The box object filter method filters ambiguous detection responses during data association. The theoretical proof of the box object filter is derived based on binomial expansion. Prognosticating a lower-dimension object than the original point object reduces the computational complexity of vehicle orchestration. Two datasets (NuScenes dataset and our lab dataset) are considered during the simulations, and our approach measures the kinematic states adequately with reduced computation complexity compared to state-of-the-art methods. The simulation outcomes show that our proposed method is effective and works well to detect and track objects. The NuScenes dataset contains 28130 samples for training, 6019 examples for validation and 6008 samples for testing. IMOT achieves 58.09% tracking accuracy and 71% mAP with 5 ms pre-processing time. The Jetson Xavier NX consumes 49.63% GPU and 9.37% average power and exhibits 25.32 ms latency compared to other approaches. Our system trains a single pair frame in 169.71 ms with affinity estimation time of 12.19 ms, track association time of 0.19 ms and mATE of 0.245 compared to state-of-the-art approaches

    A DRL-based service offloading approach using DAG for edge computational orchestration.

    Get PDF
    Edge infrastructure and Industry 4.0 required services are offered by edge-servers (ESs) with different computation capabilities to run social application's workload based on a leased-price method. The usage of Social Internet of Things (SIoT) applications increases day-to-day, which makes social platforms very popular and simultaneously requires an effective computation system to achieve high service reliability. In this regard, offloading high required computational social service requests (SRs) in a time slot based on directed acyclic graph (DAG) is an NP-complete problem. Most state-of-art methods concentrate on the energy preservation of networks but neglect the resource sharing cost and dynamic subservice execution time (SET) during the computation and resource sharing. This article proposes a two-step deep reinforcement learning (DRL)-based service offloading (DSO) approach to diminish edge server costs through a DRL influenced resource and SET analysis (RSA) model. In the first level, the service and edge server cost is considered during service offloading. In the second level, the R-retaliation method evaluates resource factors to optimize resource sharing and SET fluctuations. The simulation results show that the proposed DSO approach achieves low execution costs by streamlining dynamic service completion and transmission time, server cost, and deadline violation rate attributes. Compared to the state-of-art approaches, our proposed method has achieved high resource usage with low energy consumption

    Federated learning optimization: A computational blockchain process with offloading analysis to enhance security

    Get PDF
    The Internet of Things (IoT) technology in various applications used in data processing systems requires high security because more data must be saved in cloud monitoring systems. Even though numerous procedures are in place to increase the security and dependability of data in IoT applications, the majority of outside users can decode any transferred data at any time. Therefore, it is essential to include data blocks that, under any circumstance, other external users cannot understand. The major significance of proposed method is to incorporate an offloading technique for data processing that is carried out by using block chain technique where complete security is assured for each data. Since a problem methodology is designed with respect to clusters a load balancing technique is incorporated with data weights where parametric evaluations are made in real time to determine the consistency of each data that is monitored with IoT. The examined outcomes with five scenarios process that projected model on offloading analysis with block chain proves to be more secured thereby increasing the accuracy of data processing for each IoT applications to 89%

    A smart decentralized identifiable distributed ledger technology‐based blockchain (DIDLT‐BC) model for cloud‐IoT security

    Get PDF
    The most important and difficult challenge the digital society has recently faced is ensuring data privacy and security in cloud‐based Internet of Things (IoT) technologies. As a result, many researchers believe that the blockchain's Distributed Ledger Technology (DLT) is a good choice for various clever applications. Nevertheless, it encountered constraints and difficulties with elevated computing expenses, temporal demands, operational intricacy, and diminished security. Therefore, the proposed work aims to develop a Decentralized Identifiable Distributed Ledger Technology‐Blockchain (DIDLT‐BC) framework that is intelligent and effective, requiring the least amount of computing complexity to ensure cloud IoT system safety. In this case, the Rabin algorithm produces the digital signature needed to start the transaction. The public and private keys are then created to verify the transactions. The block is then built using the DIDLT model, which includes the block header information, hash code, timestamp, nonce message, and transaction list. The primary purpose of the Blockchain Consent Algorithm (BCA) is to find solutions for numerous unreliable nodes with varying hash values. The novel contribution of this work is to incorporate the operations of Rabin digital data signature generation, DIDLT‐based blockchain construction, and BCA algorithms for ensuring overall data security in IoT networks. With proper digital signature generation, key generation, blockchain construction and validation operations, secured data storage and retrieval are enabled in the cloud‐IoT systems. By using this integrated DIDLT‐BCA model, the security performance of the proposed system is greatly improved with 98% security, less execution time of up to 150 ms, and reduced mining time of up to 0.98 s

    Paths to Innovation in Supply Chains: The Landscape of Future Research

    Get PDF
    This chapter presents a Strategic Research and Innovation Agenda for supply chain and it is the result of an intensive work jointly performed involving a wide network of stakeholders from discrete manufacturing, process industry and logistics sector to put forward a vision to strengthen European Supply Chains for the next decade. The work is based on matching visions from literature and from experts with several iterations between desk research and workshops, focus groups and interviews. The result is a detailed analysis of the supply chain strategies identified as most relevant for the next years and definition of the related research and innovation topics as future developments and steps for the full implementation of the strategies, thus proposing innovative and cutting-edge actions to be implemented based on technological development and organisational change
    • 

    corecore