4 research outputs found

    Nanocristaux luminescents de phosphures d'indium et de zinc: synthèse, enrobage et caractérisation

    No full text
    This PhD investigation focuses on organometallic synthesis of indium phosphide (InP), zinc phosphide (Zn3P2) colloidal semiconductor nanoparticles (NPs) and core/shell structures which were obtained by the growth of a layer of zinc sulfide (ZnS) on the surface. The objectives are to understand and control the synthesis in order to shift the absorption and emission wavelengths to the near infra-red range, interesting for biomedical imaging. The first chapter presents the state of the art on the InP and InP/ZnS nanocrystals (NCx). A brief recall on the physical and chemical properties of semiconductor NCx is presented and various syntheses are described. Particular attention was paid to the size of NCx, the shift of the fluorescence emission to higher wavelengths and the optimization of quantum yields. The potential of these objects for white light emitting diodes (LED) or biomedical imaging shows the value added of using InP/ZnS NCx rather than other materials based on toxic elements such as cadmium, lead elements... The second chapter focuses on a synthesis from indium carboxylates known in the literature. The goal is to characterize the structure of NPs to understand the procedure of the synthesis and the coating. Measurements by Nuclear Magnetic Resonance (NMR) in solid state and Photoelectronic X-ray spectroscopy (XPS) revealed the oxidation of InP of the NPs. This oxide layer increases during the coating. This originates from a decarboxylating coupling of carboxylic acids at high temperature in the presence of NPs. This oxidation is believed to inhibit the growth of the object, which restricts the attainable range of wavelengths. The third chapter provides a novel synthesis from indium amidinate instead of indium carboxylate. The advantage of this approach is the potential to lower significantly the reaction temperature (150°C instead of 280°C) and to avoid secondary decarboxylation reaction. A coating with ZnS at low temperature (150°C) is also developed. The synthesis of InP NPs also causes an oxidation of the surface. A coupling takes place again between the ligands, palmitic acid and hexadecylamine providing new oxidizing conditions. The study of different ratios of ligands shows that when the reaction medium is modified, the InP NPs do not exhibit a conclusive luminescence response. Synthesis and coating are carried out under an atmosphere of hydrogen (H2) in Fisher-Porter reactor in order to counter these oxidizing conditions. NPs with diameters of the order of 3,4 nm (a necessary condition to approach the infra-red emission) and a quantum yield of 18-20% are thus obtained. These had never been observed before during this thesis. The last chapter is devoted to an exploratory study on Zn3P2 NPs. Zinc phosphide is a promising material because of non-toxic and abundant constituents, and potential access to near infra-red wavelengths. Different synthesis parameters are studied and the structural and optical properties are characterized. Preliminary results on the coating show instabilities of the Zn3P2 NPs. The use of trioctylphoshine oxide (TOPO) appears to allow the passivation of the NPs in the air and a better stability is possible under an atmosphere of H2.Ce travail de thèse porte sur la synthèse organo-métallique de nanoparticules (NPs) semi-conductrices colloïdales de phosphures d'indium (InP), de zinc (Zn3P2) et de structures cœur/coquille obtenues par la croissance d'une couche de sulfure de zinc (ZnS) à la surface des NPs. Les objectifs consistent à comprendre et maîtriser la synthèse dans le but de décaler les longueurs d'onde d'absorption et d'émission vers le proche infra-rouge, domaine spectral intéressant pour l'imagerie biomédicale. Le premier chapitre présente l'état de l'art sur les nanocristaux (NCx) d'InP et d'InP/ZnS. Un bref rappel sur les propriétés physico-chimiques des NCx semi-conducteurs est présenté et différentes synthèses sont décrites. Une attention toute particulière a été portée sur la taille des NCx, le décalage de l'émission de fluorescence vers les plus grandes longueurs d'onde et l'optimisation des rendements quantiques. Les potentialités offertes par ces objets soit pour les diodes électroluminescentes (LED) blanches soit pour l'imagerie biomédicale montrent l'intérêt d'utiliser les NCx de type InP/ZnS plutôt que d'autres matériaux à base d'éléments toxiques (Cd, Pb, ...). Le deuxième chapitre porte sur une synthèse à partir des carboxylates d'indium connue de la littérature. Le but est alors de caractériser la structure des NPs pour comprendre le déroulement de la synthèse et de l'enrobage. Des mesures par résonance magnétique nucléaire (RMN) en phase solide et spectroscopie photo-électronique par rayons X (XPS) révèlent l'oxydation des NPs d'InP. La couche d'oxyde qui se forme durant la synthèse des NPs d'InP s'épaissit lors de l'enrobage. Cette oxydation provient d'un couplage décarboxylant des acides carboxyliques à haute température en présence des NPs. Elle serait à l'origine de l'inhibition de croissance des objets, ce qui limiterait les gammes de longueurs d'onde atteignables. Le troisième chapitre concerne une nouvelle synthèse à partir d'amidinate d'indium au lieu des carboxylates d'indium. L'intérêt de cette approche est la possibilité d'abaisser considérablement la température de réaction (150°C au lieu de 280°C) et ainsi d'éviter la réaction secondaire de décarboxylation. Un enrobage à basse température (150°C) est aussi mis en place. La synthèse induit également une oxydation de la surface des NPs d'InP. Un nouveau couplage a lieu entre les ligands, l'acide palmitique et l'hexadécylamine, et donne de nouvelles conditions oxydantes. Le jeu sur les ratios des ligands montre qu'en bouleversant le milieu réactionnel, les NPs d'InP ne présentent pas de réponse en luminescence concluante. La synthèse et l'enrobage sont alors réalisés sous atmosphère de dihydrogène (H2) en réacteur Fisher-Porter dans le but de contrer ces conditions oxydantes. La synthèse et l'enrobage donnent des tailles de NPs de l'ordre de 3,4 nm (condition nécessaire pour s'approcher d'une émission dans l'infra-rouge) et un rendement quantique de 18-20 %, résultats encore jamais atteints lors de cette thèse. Le dernier chapitre est consacré à une étude exploratoire sur les NPs de Zn3P2. Le phosphure de zinc est un matériau prometteur du fait de l'abondance de ses constituants non toxiques et des longueurs d'onde potentiellement accessibles. Différents paramètres de synthèse sont étudiés et les propriétés structurales et optiques sont caractérisées. Des résultats préliminaires sur l'enrobage montrent des difficultés liées à la stabilité des NPs de Zn3P2. L'utilisation de l'oxyde de trioctylphosphine (TOPO) semble permettre la passivation de ces NPs à l'air et en travaillant sous H2 une meilleure stabilité est envisageable

    Sustainable quantum dot chemistry: effects of precursor, solvent, and surface chemistry on the synthesis of Zn 3 P 2 nanocrystals

    No full text
    International audienceThe quest of exploring alternative materials for the replacement of toxic cadmium- and lead-based quantum dots (QDs) is necessary for envisaging a sustainable future but remains highly challenging. Tackling this issue, we present the synthesis of Zn3P2 nanocrystals (NCs) of unprecedented quality. New, reactive zinc precursors yield highly crystalline, colloidally stable particles, exhibiting oxide-free surfaces, size tunability and outstanding optical properties relative to previous reports of zinc phosphide QDs

    Synthesis of Oxide-Free InP Quantum Dots: Surface Control and H2-Assisted Growth

    No full text
    International audienceControl over particle surfaces and interfaces is a principal requirement to fully take advantage of semiconducting Quantum Dot (QDs) properties. In the case of indium phosphide, the sensitivity of the material to water renders it challenging to synthesize oxide-free particles. We demonstrate the ability to achieve complete control over the surface by developing synthetic strategies based on a novel reactive indium precursor, tris(N,N'-diisopropylacetamidinato) indium(III). This complex permits the synthesis of InP QDs at temperatures as low as 150°C with no inherent surface oxidation. At higher temperatures (230°C), the concomitant use of an H 2 atmosphere yields oxide-free InP QDs. The prevention of such an amorphous oxide layer provides a clean surface suitable for subsequent growth. An extensive solid-state 2 H NMR spectroscopy study demonstrates an unprecedented H 2 bond dissociation at the QD surface yielding QDs-H species and in so doing protecting the surface from oxidation
    corecore