5 research outputs found

    Drug delivery to tumours using a novel 5-FU derivative encapsulated into lipid nanocapsules

    Get PDF
    In this work, a novel lipophilic 5-fluorouracil (5-FU) derivative was synthesised and encapsulated into lipid nanocapsules (LNC). 5-FU was modified with lauric acid to give a lipophilic mono-lauroyl-derivative (5-FU-C12, MW of about 342 g/mol, yield of reaction 70%). 5-FU-C12 obtained was efficiently encapsulated into LNC (encapsulation efficiency above 90%) without altering the physico-chemical characteristics of LNC. The encapsulation of 5-FU-C12 led to an increased stability of the drug when in contact with plasma being the drug detectable until 3 h following incubation. Cytotoxicity assay carried out using MTS on 2D cell culture showed that 5-FU-C12-loaded LNC had an enhanced cytotoxic effect on glioma (9L) and human colorectal (HTC-116) cancer cell line in comparison with 5-FU or 5-FU-C12. Then, HCT-116 tumour spheroids were cultivated and the reduction of spheroid volume was measured following treatment with drug-loaded LNC and drugs alone. Similar reduction on spheroids volume was observed following the treatment with drug-loaded LNC, 5-FU-C12 and 5-FU alone, while blank LNC displayed a reduction in cell viability only at high concentration. Globally, our data suggest that the encapsulation increased the activity of the 5-FU-C12. However, in-depth evaluations of LNC permeability into spheroids are needed to disclose the potential of these nanosystems for cancer treatment

    Drug delivery to tumours using a novel 5-FU derivative encapsulated into lipid nanocapsules

    Get PDF
    In this work, a novel lipophilic 5-fluorouracil (5-FU) derivative was synthesised and encapsulated into lipid nanocapsules (LNC). 5-FU was modified with lauric acid to give a lipophilic mono-lauroyl-derivative (5-FU-C12, MW of about 342 g/mol, yield of reaction 70%). 5-FU-C12 obtained was efficiently encapsulated into LNC (encapsulation efficiency above 90%) without altering the physico-chemical characteristics of LNC. The encapsulation of 5-FU-C12 led to an increased stability of the drug when in contact with plasma being the drug detectable until 3 h following incubation. Cytotoxicity assay carried out using MTS on 2D cell culture showed that 5-FU-C12-loaded LNC had an enhanced cytotoxic effect on glioma (9L) and human colorectal (HTC-116) cancer cell line in comparison with 5-FU or 5-FU-C12. Then, HCT-116 tumour spheroids were cultivated and the reduction of spheroid volume was measured following treatment with drug-loaded LNC and drugs alone. Similar reduction on spheroids volume was observed following the treatment with drug-loaded LNC, 5-FU-C12 and 5-FU alone, while blank LNC displayed a reduction in cell viability only at high concentration. Globally, our data suggest that the encapsulation increased the activity of the 5-FU-C12. However, in-depth evaluations of LNC permeability into spheroids are needed to disclose the potential of these nanosystems for cancer treatment

    New diketopiperazines as vectors for peptide protection and brain delivery: Synthesis and biological evaluation

    No full text
    International audienceNew strategies allowing the transfer of molecules, especially peptides, through the blood-brain barriers are a major pharmacological challenge for the treatment of brain diseases. The present study aims at evaluating in vivo the cerebral bioavailability of carrier systems, based on small and functionalizable 2,5-diketopiperazine (DKP) motifs. We studied 2 different cyclo(Lys-Lys) DKP scaffolds alone and a cyclo(Lys-Gly) DKP carrier bearing as peptide model, the tau protein hexapeptide VQIVYK sequence. The different carrier systems were synthesized and radiolabeled using one of the free domains. The stability, biodistribution, and ability to cross blood-brain barrier were investigated in vivo in mice for 99m Tc-DKP scaffolds, 99m Tc-HVQIVYK peptide alone, and 99m Tc-DKP-VQIVYK. 125 I-labelled bovine serum albumin was used as negative control for brain uptake. Both radiolabeled DKPs scaffolds and 99m Tc-DKP-VQIVYK showed a high stability, while peptide 99m Tc-HVQIVYK alone was quickly degraded in vivo. The presence of 99m Tc-DKPs scaffolds and 99m Tc-DKP-VQIVYK was observed in the ventricular and subarachnoid spaces and to a lower extent in the brain parenchyma up to 45 minutes post-injection in mice. This work highlights the potentiality of DKP scaffolds as vectors to transport peptides into the brain by limiting proteolysis and favoring cerebral bioavailability
    corecore