51 research outputs found

    Animal poisonings in Belgium: a review of the past decade

    Get PDF
    This review focuses on poisonings in companion animals, including horses, farm animals and wildlife, investigated and recorded during the past ten years at the Laboratory of Toxicology of the Faculty of Veterinary Medicine (Ghent University) and the National Poison Centre in Belgium. The causative agents of poisoning incidents vary among the different species. The Laboratory of Toxicology of the Faculty of Veterinary Medicine reports that the majority of poisoning incidents in companion animals, and especially in dogs and cats, are due to contact with insecticides and pesticides, whereas horses are more frequently poisoned by plant toxins. Farm animals, on the other hand, are mainly intoxicated by heavy metals, toxic plants and agrochemicals. The Belgian Poison Centre reports that intoxications in companion animals are mostly with agrochemicals, household products and drugs, whereas in farm animals intoxications with agrochemicals are a common problem. This review gives an overview of the most common causes of intoxication and their association with the different animal species. In addition, some rare or difficult to diagnose intoxications are described, which account for a small number of poisoning cases

    Porcine intestinal epithelial barrier disruption by the Fusarium mycotoxins deoxynivalenol and T-2 toxin promotes transepithelial passage of doxycycline and paromomycin

    Get PDF
    Background: The gastrointestinal tract is the first target for the potentially harmful effects of mycotoxins after intake of mycotoxin contaminated food or feed. With deoxynivalenol (DON), T-2 toxin (T-2), fumonisin B1 (FB1) and zearalenone (ZEA) being important Fusarium toxins in the northern hemisphere, this study aimed to investigate in vitro the toxic effect of these mycotoxins on intestinal porcine epithelial cells derived from the jejunum (IPEC-J2 cells). Viability of IPEC-J2 cells as well as the proportion of apoptotic and necrotic IPEC-J2 cells was determined by flow cytometry after 72 h of exposure to the toxins. Correlatively, the integrity of the intestinal epithelial cell monolayer was studied using Transwell (R) inserts, in which the trans-epithelial electrical resistance (TEER) and passage of the antibiotics doxycycline and paromomycin were used as endpoints. Results: We demonstrated that the percentage of Annexin-V-FITC and PI negative (viable) cells, Annexin-V-FITC positive and PI negative (apoptotic) cells and Annexin-V-FITC and PI positive (necrotic) IPEC-J2 cells showed a mycotoxin concentration-dependent relationship with T-2 toxin being the most toxic. Moreover, the ratio between Annexin-V-FITC positive and PI negative cells and Annexin-V-FITC and PI positive cells varied depending on the type of toxin. More Annexin-V-FITC and PI positive cells could be found after treatment with T-2 toxin, while more Annexin-V-FITC positive and PI negative cells were found after exposure to DON. Consistent with the cytotoxicity results, both DON and T-2 decreased TEER and increased cellular permeability to doxycycline and paromomycin in a time-and concentration-dependent manner. Conclusions: It was concluded that Fusarium mycotoxins may severely disturb the intestinal epithelial barrier and promote passage of antibiotics

    The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases

    Get PDF
    Contamination of food and feed with mycotoxins is a worldwide problem. At present, acute mycotoxicosis caused by high doses is rare in humans and animals. Ingestion of low to moderate amounts of Fusarium mycotoxins is common and generally does not result in obvious intoxication. However, these low amounts may impair intestinal health, immune function and/or pathogen fitness, resulting in altered host pathogen interactions and thus a different outcome of infection. This review summarizes the current state of knowledge about the impact of Fusarium mycotoxin exposure on human and animal host susceptibility to infectious diseases. On the one hand, exposure to deoxynivalenol and other Fusarium mycotoxins generally exacerbates infections with parasites, bacteria and viruses across a wide range of animal host species. Well-known examples include coccidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry, enteric septicemia of catfish, swine respiratory disease, aspergillosis in poultry and rabbits, reovirus infection in mice and Porcine Reproductive and Respiratory Syndrome Virus infection in pigs. However, on the other hand, T-2 toxin has been shown to markedly decrease the colonization capacity of Salmonella in the pig intestine. Although the impact of the exposure of humans to Fusarium toxins on infectious diseases is less well known, extrapolation from animal models suggests possible exacerbation of, for instance, colibacillosis and salmonellosis in humans, as well

    T-2 toxin induced Salmonella Typhimurium intoxication results in decreased Salmonella numbers in the cecum contents of pigs, despite marked effects on Salmonella-host cell interactions

    Get PDF
    The mycotoxin T-2 toxin and Salmonella Typhimurium infections pose a significant threat to human and animal health. Interactions between both agents may result in a different outcome of the infection. Therefore, the aim of the presented study was to investigate the effects of low and relevant concentrations of T-2 toxin on the course of a Salmonella Typhimurium infection in pigs. We showed that the presence of 15 and 83 μg T-2 toxin per kg feed significantly decreased the amount of Salmonella Typhimurium bacteria present in the cecum contents, and a tendency to a reduced colonization of the jejunum, ileum, cecum, colon and colon contents was noticed. In vitro, proteomic analysis of porcine enterocytes revealed that a very low concentration of T-2 toxin (5 ng/mL) affects the protein expression of mitochondrial, endoplasmatic reticulum and cytoskeleton associated proteins, proteins involved in protein synthesis and folding, RNA synthesis, mitogen-activated protein kinase signaling and regulatory processes. Similarly low concentrations (1-100 ng/mL) promoted the susceptibility of porcine macrophages and intestinal epithelial cells to Salmonella Typhimurium invasion, in a SPI-1 independent manner. Furthermore, T-2 toxin (1-5 ng/mL) promoted the translocation of Salmonella Typhimurium over an intestinal porcine epithelial cell monolayer. Although these findings may seem in favour of Salmonella Typhimurium, microarray analysis showed that T-2 toxin (5 ng/mL) causes an intoxication of Salmonella Typhimurium, represented by a reduced motility and a downregulation of metabolic and Salmonella Pathogenicity Island 1 genes. This study demonstrates marked interactions of T-2 toxin with Salmonella Typhimurium pathogenesis, resulting in bacterial intoxication
    corecore