7 research outputs found

    Abundance and biogeography of picoprasinophyte ecotypes and other phytoplankton in the eastern North Pacific Ocean

    Get PDF
    Eukaryotic algae within the picoplankton size class (< 2 μmin diameter) are important marine primary producers, but their spatial and ecological distributions are not well characterized. Here, we studied three picoeukaryotic prasinophyte genera and their cyanobacterial counterparts, Prochlorococcus and Synechococcus, during two cruises along a North Pacific transect characterized by different ecological regimes. Picoeukaryotes and Synechococcus reached maximum abundances of 1.44 × 105 and 3.37 × 105 cells · ml-1, respectively, in mesotrophic waters, while Prochlorococcus reached 1.95 × 105 cells · ml-1 in the oligotrophic ocean. Of the picoeukaryotes, Bathycoccus was present at all stations in both cruises, reaching 21,368±327 18S rRNA gene copies · ml-1. Micromonas and Ostreococcus clade OI were detected only in mesotrophic and coastal waters and Ostreococcus clade OII only in the oligotrophic ocean. To resolve proposed Bathycoccus ecotypes, we established genetic distances for 1,104 marker genes using targeted metagenomes and the Bathycoccus prasinos genome. The analysis was anchored in comparative genome analysis of three Ostreococcus species for which physiological and environmental data are available to facilitate data interpretation. We established that two Bathycoccus ecotypes exist, named here BI (represented by coastal isolate Bathycoccus prasinos) and BII. These share 82±6 nucleotide identity across homologs, while the Ostreococcus spp. share 75±8. We developed and applied an analysis of ecomarkers to metatranscriptomes sequenced here and published -omics data from the same region. The results indicated that the Bathycoccus ecotypes cooccur more often than Ostreococcus clades OI and OII do. Exploratory analyses of relative transcript abundances suggest that Bathycoccus NRT2.1 and AMT2.2 are high-affinity NO3 - and low-affinity NH4 + transporters, respectively, with close homologs in multiple picoprasinophytes. Additionally, in the open ocean, where dissolved iron concentrations were low (0.08 nM), there appeared to be a shift to the use of nickel superoxide dismutases (SODs) from Mn/Fe/Cu SODs closer inshore. Our study documents the distribution of picophytoplankton along a North Pacific ecological gradient and offers new concepts and techniques for investigating their biogeography. © 2016, American Society for Microbiology. All Rights Reserved

    Developing standards for dissolved iron in seawater

    No full text
    International audienceIn nearly a dozen open-ocean fertilization experiments conducted by more than 100 researchers from nearly 20 countries, adding iron at the sea surface has led to distinct increases in photosynthesis rates and biomass. These experiments confirmed the hypothesis proposed by the late John Martin [Martin, 1990] that dissolved iron concentration is a key variable that controls phytoplankton processes in ocean surface waters However, the measurement of dissolved iron concentration in seawater remains a difficult task [Bruland and Rue, 2001] with significant interlaboratory differences apparent at times. The availability of a seawater reference solution with well-known dissolved iron (Fe) concentrations similar to open-ocean values, which could be used for the calibration of equipment or other tasks, would greatly alleviate these problems [National Research Council (NRC), 200

    Protein Design: Toward Functional Metalloenzymes

    No full text
    The scope of this Review is to discuss the construction of metal sites in designed protein scaffolds. We categorize the effort of designing proteins into redesign, which is to rationally engineer desired functionality into an existing protein scaffold,(1-9) and de novo design, which is to build a peptidic or protein system that is not directly related to any sequence found in nature yet folds into a predicted structure and/or carries out desired reactions.(10-12) We will analyze and interpret the significance of designed protein systems from a coordination chemistry and biochemistry perspective, with an emphasis on those containing constructed metal sites as mimics for metalloenzymes
    corecore