5,965 research outputs found
LHCb VELO software alignment, Part III: the alignment of the relative sensor positions
The LHCb Vertex Locator contains 42 silicon sensor modules. Each module has
two silicon sensors. A method for determining the relative alignment of the
silicon sensors within each module from data is presented. The software
implementation details are discussed. Monte-Carlo simulation studies are
described that demonstrate an alignment precision of 1.3 micron is obtained in
the sensor plane
Alignment procedure of the LHCb Vertex Detector
LHCb is one of the four main experiments of the Large Hadron Collider (LHC)
project, which will start at CERN in 2008. The experiment is primarily
dedicated to B-Physics and hence requires precise vertex reconstruction. The
silicon vertex locator (VELO) has a single hit precision of better than 10
micron and is used both off-line and in the trigger. These requirements place
strict constraints on its alignment. Additional challenges for the alignment
arise from the detector being retracted between each fill of the LHC and from
its unique circular disc r/phi strip geometry. This paper describes the track
based software alignment procedure developed for the VELO. The procedure is
primarily based on a non-iterative method using a matrix inversion technique.
The procedure is demonstrated with simulated events to be fast, robust and to
achieve a suitable alignment precision.Comment: accepted for publication in NIM
Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields
Electric polarization loops are measured at room temperature on highly pure
BiFeO3 single crystals synthesized by a flux growth method. Because the
crystals have a high electrical resistivity, the resulting low leakage currents
allow us to measure a large spontaneous polarization reaching 100
microC.cm^{-2}, a value never reported in the bulk. During electric cycling,
the slow degradation of the material leads to an evolution of the hysteresis
curves eventually preventing full saturation of the crystals.Comment: 8 pages, 3 figure
Current induced distortion of a magnetic domain wall
We consider the spin torque induced by a current flowing ballistically
through a magnetic domain wall. In addition to a global pressure in the
direction of the electronic flow, the torque has an internal structure of
comparable magnitude due to the precession of the electrons' spins at the
"Larmor" frequency. As a result, the profile of the domain wall is expected to
get distorted by the current and acquires a periodic sur-structure.Comment: 5 pages, 3 eps figure
Light controlled magnetoresistance and magnetic field controlled photoresistance in CoFe film deposited on BiFeO3
We present a magnetoresistive-photoresistive device based on the interaction
of a piezomagnetic CoFe thin film with a photostrictive BiFeO3 substrate that
undergoes light-induced strain. The magnitude of the resistance and
magnetoresistance in the CoFe film can be controlled by the wavelength of the
incident light on the BiFeO3. Moreover, a light-induced decrease in anisotropic
magnetoresistance is detected due to an additional magnetoelastic contribution
to magnetic anisotropy of the CoFe film. This effect may find applications in
photo-sensing systems, wavelength detectors and can possibly open a research
development in light-controlled magnetic switching properties for next
generation magnetoresistive memory devices.Comment: 5 pages, 4 figures, journal pape
LHCb VELO software alignment - PART II: the alignment of the VELO detector-halves
The software alignment of the Vertex Locator (VELO) is a critical component of the LHCb alignment strategy. This note demonstrates a potential algorithm to perform the alignment of the VELO detector-halves. The approach described in this document, and the tools developed, are also applicable to the alignment of the other LHCb sub-systems and the global relative alignment of the sub-detectors
Fabrication and structural characterization of highly ordered sub-100-nm planar magnetic nanodot arrays over 1 cm2 coverage area
Porous alumina masks are fabricated by anodization of aluminum films grown on both semiconducting and insulating substrates. For these self-assembled alumina masks, pore diameters and periodicities within the ranges of 10–130 and 20–200nm, respectively, can be controlled by varying anodization conditions. 20nm periodicities correspond to pore densities in excess of 1012 per square inch, close to the holy grail of media with 1Tbit∕in.2 density. With these alumina masks, ordered sub-100-nm planar ferromagnetic nanodot arrays covering over 1cm2 were fabricated by electron beam evaporation and subsequent mask lift-off. Moreover, exchange-biased bilayer nanodots were fabricated using argon-ion milling. The average dot diameter and periodicity are tuned between 25 and 130nm and between 45 and 200nm, respectively. Quantitative analyses of scanning electron microscopy (SEM) images of pore and dot arrays show a high degree of hexagonal ordering and narrow size distributions. The dot periodicity obtained from grazi..
Nanoscale Suppression of Magnetization at Atomically Assembled Manganite Interfaces
Using polarized X-rays, we compare the electronic and magnetic properties of
a La(2/3)Sr(1/3)MnO(3)(LSMO)/SrTiO(3)(STO) and a modified
LSMO/LaMnO(3)(LMO)/STO interface. Using the technique of X-ray resonant
magnetic scattering (XRMS), we can probe the interfaces of complicated layered
structures and quantitatively model depth-dependent magnetic profiles as a
function of distance from the interface. Comparisons of the average electronic
and magnetic properties at the interface are made independently using X-ray
absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). The
XAS and the XMCD demonstrate that the electronic and magnetic structure of the
LMO layer at the modified interface is qualitatively equivalent to the
underlying LSMO film. From the temperature dependence of the XMCD, it is found
that the near surface magnetization for both interfaces falls off faster than
the bulk. For all temperatures in the range of 50K - 300K, the magnetic
profiles for both systems always show a ferromagnetic component at the
interface with a significantly suppressed magnetization that evolves to the
bulk value over a length scale of ~1.6 - 2.4 nm. The LSMO/LMO/STO interface
shows a larger ferromagnetic (FM) moment than the LSMO/STO interface, however
the difference is only substantial at low temperature.Comment: 4 pages, 4 figure
- …