1,829 research outputs found

    The Integrity of the Cell Wall and Its Remodeling during Heterocyst Differentiation Are Regulated by Phylogenetically Conserved Small RNA Yfr1 in Nostoc sp. Strain PCC 7120

    Get PDF
    Yfr1 is a strictly conserved small RNA in cyanobacteria. A bioinformatic prediction to identify possible interactions of Yfr1 with mRNAs was carried out by using the sequences of Yfr1 from several heterocyst-forming strains, including Nostoc sp. strain PCC 7120. The results of the prediction were enriched in genes encoding outer membrane proteins and enzymes related to peptidoglycan biosynthesis and turnover. Heterologous expression assays with Escherichia coli demonstrated direct interactions of Yfr1 with mRNAs of 11 of the candidate genes. The expression of 10 of them (alr2458, alr4550, murC, all4829, all2158, mraY, alr2269, alr0834, conR, patN) was repressed by interaction with Yfr1, whereas the expression of amiC2, encoding an amidase, was increased. The interactions between Yfr1 and the 11 mRNAs were confirmed by site-directed mutagenesis of Yfr1. Furthermore, a Nostoc strain with reduced levels of Yfr1 had larger amounts of mraY and murC mRNAs, supporting a role for Yfr1 in the regulation of those genes. Nostoc strains with either reduced or increased expression of Yfr1 showed anomalies in cell wall completion and were more sensitive to vancomycin than the wild-type strain. Furthermore, growth in the absence of combined nitrogen, which involves the differentiation of heterocysts, was compromised in the strain overexpressing Yfr1, and filaments were broken at the connections between vegetative cells and heterocysts. These results indicate that Yfr1 is an important regulator of cell wall homeostasis and correct cell wall remodeling during heterocyst differentiation.IMPORTANCE Bacterial small RNAs (sRNAs) are important players affecting the regulation of essentially every aspect of bacterial physiology. The cell wall is a highly dynamic structure that protects bacteria from their fluctuating environment. Cell envelope remodeling is particularly critical for bacteria that undergo differentiation processes, such as spore formation or differentiation of heterocysts. Heterocyst development involves the deposition of additional layers of glycolipids and polysaccharides outside the outer membrane. Here, we show that a cyanobacterial phylogenetically conserved small regulatory RNA, Yfr1, coordinates the expression of proteins involved in cell wall-related processes, including peptidoglycan metabolism and transport of different molecules, as well as expression of several proteins involved in heterocyst differentiation.España Ministerio de Educación, Cultura y Deporte (FPU014/05123 and EST16-00088)España Ministerio de Economía y Competitividad BFU2013-48282-C2-1España Agencia Estatal de Investigación (AEI), Ministerio de Economía, Industria y Competitividad, both cofinanced by the Fondo Europeo de Desarrollo Regional (FEDER) BFU2016-74943-C2-1-

    NsrR1, a Nitrogen stress-repressed sRNA, contributes to the regulation of nblA in Nostoc sp. PCC 7120

    Get PDF
    Small regulatory RNAs (sRNAs) are currently considered as major post-transcriptional regulators of gene expression in bacteria. The interplay between sRNAs and transcription factors leads to complex regulatory networks in which both transcription factors and sRNAs may appear as nodes. In cyanobacteria, the responses to nitrogen availability are controlled at the transcriptional level by NtcA, a CRP/FNR family regulator. In this study, we describe an NtcA-regulated sRNA in the cyanobacterium Nostoc sp. PCC 7120, that we have named NsrR1 (nitrogen stress repressed RNA1). We show sequence specific binding of NtcA to the promoter of NsrR1. Prediction of possible mRNA targets regulated by NsrR1 allowed the identification of nblA, encoding a protein adaptor for phycobilisome degradation under several stress conditions, including nitrogen deficiency. We demonstrate specific interaction between NsrR1 and the 5′-UTR of the nblA mRNA, that leads to decreased expression of nblA. Because both NsrR1 and NblA are under transcriptional control of NtcA, this regulatory circuit constitutes a coherent feed-forward loop, involving a transcription factor and an sRNA.Agencia Estatal de Investigación (AEI) BFU2016-74943- C2-1-PMinisterio de Economía y Competitividad BFU2013-48282-C2-1-P, BES-2014- 06848

    A combinatorial strategy of alternative promoter use during differentiation of a heterocystous cyanobacterium

    Get PDF
    Heterocystous cyanobacteria such as Nostoc sp. are filamentous photosynthetic organisms that, in response to nitrogen deficiency, undergo a differentiation process transforming certain, semi-regularly spaced cells into heterocysts, devoted to nitrogen fixation. During transition to a nitrogen-fixing regime, growth of most vegetative cells in the filament is temporarily arrested due to nutritional deprivation, but developing heterocysts require intense transcriptional activity. Therefore, the coexistence of arrested vegetative cells and actively developing prospective heterocysts relies on the simultaneous operation of somewhat opposite transcriptional programs. We have identified genes with multiple nitrogen-responsive transcriptional starts appearing in seemingly paradoxical combinations. For instance, sigA, encoding the RNA polymerase housekeeping sigma factor, is transcribed from one major nitrogen stress-repressed promoter and from a second, nitrogen stress-induced promoter. Here, we show that both promoters are expressed with complementary temporal dynamics. Using a gfp reporter we also show that transcription from the inducible promoter takes place exclusively in differentiating heterocysts and is already detected before any morphological or fluorescence signature of differentiation is observed. Tandem promoters with opposite dynamics could operate a compensatory mechanism in which repression of transcription from the major promoter operative in vegetative cells is offset by transcription from a new promoter only in developing heterocyst.Ministerio de Economía y Competitividad BFU2013-48282-C2-1Agencia Estatal de Investigación (AEI) BFU2016-74943-C2-1-PMinisterio de Educación, Cultura y Deportes FPU014/0512

    Le pronunce del Tribunale costituzionale spagnolo sulla riforma dello Statuto della Catalogna

    Get PDF
    Comentario en torno a las sentencias 31/2010, de 28 de junio, 46 y 47/2010, de 8 de septiembre, 48/2010, de 9 de septiembre, 49/2010, de 29 de septiembre, y 137 y 138/2010, de 16 de diciembre, que resuelven los recursos de inconstitucionalidad interpuestos contra la Ley orgánica 6/2006, de 19 de julio, de Reforma del Estatuto de Autonomía de Cataluñ
    corecore