1,233 research outputs found
Resonant optical control of the structural distortions that drive ultrafast demagnetization in CrO
We study how the color and polarization of ultrashort pulses of visible light
can be used to control the demagnetization processes of the antiferromagnetic
insulator CrO. We utilize time-resolved second harmonic generation
(SHG) to probe how changes in the magnetic and structural state evolve in time.
We show that, varying the pump photon-energy to excite either localized
transitions within the Cr or charge transfer states, leads to markedly
different dynamics. Through a full polarization analysis of the SHG signal,
symmetry considerations and density functional theory calculations, we show
that, in the non-equilibrium state, SHG is sensitive to {\em both} lattice
displacements and changes to the magnetic order, which allows us to conclude
that different excited states couple to phonon modes of different symmetries.
Furthermore, the spin-scattering rate depends on the induced distortion,
enabling us to control the timescale for the demagnetization process. Our
results suggest that selective photoexcitation of antiferromagnetic insulators
allows fast and efficient manipulation of their magnetic state.Comment: 7 pages, 5 figure
Abnormal temporal coupling of tactile perception and motor action in Parkinson's disease
Evidence shows altered somatosensory temporal discrimination threshold (STDT) in Parkinson's disease in comparison to normal subjects. In healthy subjects, movement execution modulates STDT values through mechanisms of sensory gating. We investigated whether STDT modulation during movement execution in patients with Parkinson's disease differs from that in healthy subjects. In 24 patients with Parkinson's disease and 20 healthy subjects, we tested STDT at baseline and during index finger abductions (at movement onset "0", 100, and 200 ms thereafter). We also recorded kinematic features of index finger abductions. Fifteen out of the 24 patients were also tested ON medication. In healthy subjects, STDT increased significantly at 0, 100, and 200 ms after movement onset, whereas in patients with Parkinson's disease in OFF therapy, it increased significantly at 0 and 100 ms but returned to baseline values at 200 ms. When patients were tested ON therapy, STDT during index finger abductions increased significantly, with a time course similar to that of healthy subjects. Differently from healthy subjects, in patients with Parkinson's disease, the mean velocity of the finger abductions decreased according to the time lapse between movement onset and the delivery of the paired electrical stimuli for testing somatosensory temporal discrimination. In conclusion, patients with Parkinson's disease show abnormalities in the temporal coupling between tactile information and motor outflow. Our study provides first evidence that altered temporal processing of sensory information play a role in the pathophysiology of motor symptoms in Parkinson's disease
Neurophysiological and clinical biomarkers of secondary progressive multiple sclerosis: A cross-sectional study
Timely diagnosis of secondary progressive multiple sclerosis (SPMS) represents a clinical challenge. The Frailty Index, a quantitative frailty measure, and the Neurophysiological Index, a combined measure of sensorimotor cortex inhibitory mechanism parameters, have recently emerged as promising tools to support SPMS diagnosis. The aim of this study was to explore the possible relationship between these two indices in MS. MS participants underwent a clinical evaluation, Frailty Index administration, and neurophysiological assessment. Frailty and Neurophysiological Index scores were found to be higher in SPMS and correlated with each other, thus suggesting that they may capture similar SPMS-related pathophysiological mechanisms
In Vitro and In Vivo Toxicity Evaluation of Natural Products with Potential Applications as Biopesticides
The use of natural products in agriculture as pesticides has been strongly advocated. However, it is necessary to assess their toxicity to ensure their safe use. In the present study, mammalian cell lines and fish models of the zebrafish (Danio rerio) and medaka (Oryzias latipes) have been used to investigate the toxic effects of ten natural products which have potential applications as biopesticides. The fungal metabolites cavoxin, epi-epoformin, papyracillic acid, seiridin and sphaeropsidone, together with the plant compounds inuloxins A and C and ungeremine, showed no toxic effects in mammalian cells and zebrafish embryos. Conversely, cyclopaldic and α-costic acids, produced by Seiridium cupressi and Dittrichia viscosa, respectively, caused significant mortality in zebrafish and medaka embryos as a result of yolk coagulation. However, both compounds showed little effect in zebrafish or mammalian cell lines in culture, thus highlighting the importance of the fish embryotoxicity test in the assessment of environmental impact. Given the embryotoxicity of α-costic acid and cyclopaldic acid, their use as biopesticides is not recommended. Further ecotoxicological studies are needed to evaluate the potential applications of the other compounds
Exciton-exciton annihilation and biexciton stimulated emission in graphene nanoribbons
Graphene nanoribbons display extraordinary optical properties due to one-dimensional quantum-confinement, such as width-dependent bandgap and strong electron-hole interactions, responsible for the formation of excitons with extremely high binding energies. Here we use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics. We show that in the high-excitation regime biexcitons are formed by nonlinear exciton-exciton annihilation, and that they radiatively recombine via stimulated emission. We obtain a biexciton binding energy of \ue2 \u2030250 meV, in very good agreement with theoretical results from quantum Monte Carlo simulations. These observations pave the way for the application of graphene nanoribbons in photonics and optoelectronics
Loss of ciliary gene Bbs8 results in physiological defects in the retinal pigment epithelium
Primary cilia are sensory organelles vital for developmental and physiological processes. Their dysfunction causes a range of phenotypes including retinopathies. Although primary cilia have been described in the retinal pigment epithelium (RPE), little is known about their contribution to biological processes within this tissue. Ciliary proteins are increasingly being identified in non-ciliary locations and might carry out additional functions, disruption of which possibly contributes to pathology. The RPE is essential for maintaining photoreceptor cells and visual function. We demonstrate that upon loss of Bbs8, predominantly thought to be a ciliary gene, the RPE shows changes in gene and protein expression initially involved in signaling pathways and developmental processes, and at a later time point RPE homeostasis and function. Differentially regulated molecules affecting the cytoskeleton and cellular adhesion, led to defective cellular polarization and morphology associated with a possible epithelial-to-mesenchymal transition (EMT)-like phenotype. Our data highlights the benefit of combinatorial “omics” approaches with in vivo data for investigating the function of ciliopathy proteins. It also emphasizes the importance of ciliary proteins in the RPE and their contribution to visual disorders, which must be considered when designing treatment strategies for retinal degeneration
Deletion of IFT20 exclusively in the RPE ablates primary cilia and leads to retinal degeneration
Vision impairment places a serious burden on the aging society, affecting the lives of millions of people. Many retinal diseases are of genetic origin, of which over 50% are due to mutations in cilia-associated genes. Most research on retinal degeneration has focused on the ciliated photoreceptor cells of the retina. However, the contribution of primary cilia in other ocular cell types has largely been ignored. The retinal pigment epithelium (RPE) is a monolayer epithelium at the back of the eye intricately associated with photoreceptors and essential for visual function. It is already known that primary cilia in the RPE are critical for its development and maturation; however, it remains unclear whether this affects RPE function and retinal tissue homeostasis. We generated a conditional knockout mouse model, in which IFT20 is exclusively deleted in the RPE, ablating primary cilia. This leads to defective RPE function, followed by photoreceptor degeneration and, ultimately, vision impairment. Transcriptomic analysis offers insights into mechanisms underlying pathogenic changes, which include transcripts related to epithelial homeostasis, the visual cycle, and phagocytosis. Due to the loss of cilia exclusively in the RPE, this mouse model enables us to tease out the functional role of RPE cilia and their contribution to retinal degeneration, providing a powerful tool for basic and translational research in syndromic and non-syndromic retinal degeneration. Non-ciliary mechanisms of IFT20 in the RPE may also contribute to pathogenesis and cannot be excluded, especially considering the increasing evidence of non-ciliary functions of ciliary proteins
Multiple sclerosis-disease modifying therapies affect humoral and T-cell response to mRNA COVID-19 vaccine
The mRNA vaccines help protect from COVID-19 severity, however multiple sclerosis (MS) disease modifying therapies (DMTs) might affect the development of humoral and T-cell specific response to vaccination
- …