9 research outputs found

    Characterization and differentiation of equine experimental local and early systemic inflammation by expression responses of inflammation-related genes in peripheral blood leukocytes

    Get PDF
    BACKGROUND: Local inflammation may progress into systemic inflammation. To increase our understanding of the basic immunological processes during transition of equine local inflammation into a systemic state, investigation into the equine systemic immune response to local inflammation is warranted. Therefore, the aim of this study was to investigate the innate peripheral blood leukocyte (PBL) immune response to local inflammation in horses, and to compare this response with the PBL immune response during the early phase of acute systemic inflammation. Expression of 22 selected inflammation-related genes was measured in whole blood leukocytes from 6 horses in an experimental cross-over model of lipopolysaccharide- (LPS-) induced acute synovitis (3 μg LPS intraarticularly; locally inflamed [LI] horses) and endotoxemia (1 μg LPS/kg intravenously; systemically inflamed [SI] horses). Multiple clinical and hematological/biochemical examinations were performed, and serial blood samples were analyzed by reverse transcription quantitative real-time PCR. Post-induction expression profiles of all genes were compared between study groups using principal component analysis (PCA) and hierarchical clustering. RESULTS: Moderate synovitis and mild systemic inflammation of approximately 24 h duration was confirmed by clinical and paraclinical observations in LI and SI horses, respectively. In the LI group, samples obtained 3–16 h post-injection showed distinct clustering in the PCA compared with baseline levels, indicating a transcriptional response to local inflammation in PBLs in this time interval. There was no clinical or hematological indication of actual systemic inflammation. There was a clear separation of all LI samples from all SI samples in two distinct clusters, indicating that expression profiles in the two study groups were different, independent of time since LPS injection. Co-regulated genes formed four clusters across study groups which were distinctly differently regulated. Only few of individual genes displayed different expression between the study groups at all times after LPS injection. CONCLUSIONS: Local inflammation in horses initiated an innate transcriptional response in PBLs, which differed from the transcriptional response during the early phase of systemic inflammation. This study may provide new insights into the immunobiology of PBLs during the transition of local inflammation into a systemic state. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-016-0706-8) contains supplementary material, which is available to authorized users

    Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    Get PDF
    BACKGROUND: In horses, insights into the innate immune processes in acute systemic inflammation are limited even though these processes may be highly important for future diagnostic and therapeutic advances in high-mortality disease conditions as the systemic inflammatory response syndrome (SIRS) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic inflammation was induced in 6 adult horses by the intravenous injection of 1 μg lipopolysaccharide (LPS) per kg btw. Sixteen blood samples were collected for each horse at predetermined intervals and analyzed by reverse transcription quantitative real-time PCR. Post-induction expression levels for each gene were compared with baseline levels. RESULTS: Systemic inflammation was confirmed by the presence of clinical and hematological changes which were consistent with SIRS. The clinical response to LPS was transient and brief as all horses except one showed unaltered general demeanor after 24 h. Twenty-two leukocyte genes were significantly regulated at at least one time point during the experimental period. By close inspection of the temporal responses the dynamic changes in mRNA abundance revealed a very rapid onset of both pro- and anti-inflammatory mediators and a substantial variation in both expression magnitudes and duration of changes between genes. A majority of the 22 significantly regulated genes peaked within the first 8 h after induction, and an on-going, albeit tightly controlled, regulation was seen after 24 h despite approximate clinical recovery. CONCLUSIONS: This first broad study of gene expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0450-5) contains supplementary material, which is available to authorized users

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Effects of a 12-Week Multimodal Exercise Intervention Among Older Patients with Advanced Cancer:Results from a Randomized Controlled Trial

    No full text
    BACKGROUND: Older patients with cancer are at risk of physical decline and impaired quality of life during oncological treatment. Exercise training has the potential to reduce these challenges. The study aim was to investigate the feasibility and effect of a multimodal exercise intervention in older patients with advanced cancer (stages III/IV). PATIENTS AND METHODS: Eighty-four older adults (≥65 years) with advanced pancreatic, biliary tract, or non-small cell lung cancer who received systemic oncological treatment were randomized 1:1 to an intervention group or a control group. The intervention was a 12-week multimodal exercise-based program including supervised exercise twice weekly followed by a protein supplement, a home-based walking program, and nurse-led support and counseling. The primary endpoint was change in physical function (30-second chair stand test) at 13 weeks. RESULTS: Median age of the participants was 72 years (interquartile range [IQR] 68-75). Median adherence to the exercise sessions was 69% (IQR 21-88) and 75% (IQR 33-100) for the walking program. At 13 weeks, there was a significant difference in change scores of 2.4 repetitions in the chair stand test, favoring the intervention group (p < .0001). Furthermore, significant beneficial effects were seen for physical endurance (6-minute walk test), hand grip strength, physical activity, symptom burden, symptoms of depression and anxiety, global health status (quality of life), and lean body mass. No effects were seen for dose intensity, hospitalizations, or survival. CONCLUSION: A 12-week multimodal exercise intervention with targeted support proved effective in improving physical function in older patients with advanced cancer during oncological treatment

    Reduced Cancer Incidence in Huntington's Disease: Analysis in the Registry Study

    No full text
    Background: People with Huntington's disease (HD) have been observed to have lower rates of cancers. Objective: To investigate the relationship between age of onset of HD, CAG repeat length, and cancer diagnosis. Methods: Data were obtained from the European Huntington's disease network REGISTRY study for 6540 subjects. Population cancer incidence was ascertained from the GLOBOCAN database to obtain standardised incidence ratios of cancers in the REGISTRY subjects. Results: 173/6528 HD REGISTRY subjects had had a cancer diagnosis. The age-standardised incidence rate of all cancers in the REGISTRY HD population was 0.26 (CI 0.22-0.30). Individual cancers showed a lower age-standardised incidence rate compared with the control population with prostate and colorectal cancers showing the lowest rates. There was no effect of CAG length on the likelihood of cancer, but a cancer diagnosis within the last year was associated with a greatly increased rate of HD onset (Hazard Ratio 18.94, p < 0.001). Conclusions: Cancer is less common than expected in the HD population, confirming previous reports. However, this does not appear to be related to CAG length in HTT. A recent diagnosis of cancer increases the risk of HD onset at any age, likely due to increased investigation following a cancer diagnosis
    corecore