207 research outputs found

    Activity-composition relations in the system CaCO3-MgCO3 predicted from static structure energy calculations and Monte Carlo simulations

    Get PDF
    Thermodynamic mixing properties and subsolidus phase relations of the rhombohedral carbonate system, (1 - x) CaCO3 - x MgCO3, were modelled in the temperature range of 623-2023 K with static structure energy calculations based on well-parameterised empirical interatomic potentials. Relaxed static structure energies of a large set of randomly varied structures in a 4 x 4 x 1 supercell of R3c calcite (a = 19.952A , c = 17.061A ) were calculated with the General Utility Lattice Program (GULP). These energies were cluster expanded in a basis set of 12 pair-wise effective interactions. Temperature-dependent enthalpies of mixing were calculated by the Monte Carlo method. Free energies of mixing were obtained by thermodynamic integration of the Monte Carlo results. The calculated phase diagram is in good agreement with experimental phase boundaries

    Quantum effective potential, electron transport and conformons in biopolymers

    Full text link
    In the Kirchhoff model of a biopolymer, conformation dynamics can be described in terms of solitary waves, for certain special cross-section asymmetries. Applying this to the problem of electron transport, we show that the quantum effective potential arising due to the bends and twists of the polymer enables us to formalize and quantify the concept of a {\it conformon} that has been hypothesized in biology. Its connection to the soliton solution of the cubic nonlinear Schr\"{o}dinger equation emerges in a natural fashion.Comment: to appear in J. Phys.

    A thermodynamic adsorption/entrapment model for selenium(IV) coprecipitation with calcite

    Get PDF
    Selenium is an environmentally relevant trace element, while the radioisotope 79Se is of particular concern in the context of nuclear waste disposal safety. Oxidized selenium species are relatively soluble and show only weak adsorption at common mineral surfaces. However, a possible sorption mechanism for selenium in the geosphere is the structural incorporation of selenium(IV) (selenite, SeO3 2) into calcite (CaCO3). In this study we investigate the interactions between selenite and calcite by a series of experimental and computational methods with the aim to quantify selenite incorporation into calcite at standard conditions. We further seek to describe the thermodynamics of selenite-doped calcite, and selenite coprecipitation with calcite. The structure of the incorporated species is investigated using Se K-edge EXAFS (isotropic and polarization dependent) and results are compared to density functional theory (DFT) calculations. These investigations confirm structural incorporation of selenite into calcite by the substitution of carbonate for selenite, leading to the formation of a Ca(SeO3)X(CO3)(1-X)solid solution.Coprecipitation experiments at low supersaturation indicate a linear increase of the selenite to carbonate ratio in the solid with the increase of the selenite to carbonate ratio in the contact solution. This relationship can be described under the assumption of an ideal mixing between calcite and a virtual CaSeO3 endmember, whose standard Gibbs free energy (G0(CaSeO3_exp) = 953 ± 6 kJ/mol, log10(KSP(CaSeO3_exp)) = 6.7 ± 1.0) is defined by linear extrapolation of the excess free energy from the dilute Henry’s law domain to X(CaSeO3) = 1. In contrast to this experimental result, DFT and force field calculations predict the virtual bulk CaSeO3 endmember to be significantly less stable and more soluble: G0(CaSeO3 bulk) = 912 ± 10 kJ/mol and log10(KSP(CaSeO3_bulk)) = 0.5 ± 1.7. To explain this discrepancy we introduce a thermodynamic adsorption/entrapment concept. This concept is based on the idea that the experimental value of 953 ± 6 kJ/mol reflects the Gibbs free energy of CaSeO3 within the surface layer, while the value obtained from atomistic calculations reflects bulk thermodynamic properties. In coprecipitation experiments performed at steady-state conditions the difference between these values is compensated by the supersaturation. Thus, if the Gibbs free energies of the bulk CaCO3 and CaSeO3 endmembers are substituted with the Gibbs free energies of the surface endmembers, the coprecipitation experiment can still be treated within the formalism of equilibrium thermodynamics. This concept leads to a number of important consequences, which can be tested both experimentally and theoretically.We show that selenite adsorption at the calcite surface and selenite coprecipitation with calcite under supersaturated conditions can be described with the same partition coefficient. This implies that the coprecipitation can be viewed as a sequence of adsorption and entrapment events. On the other hand, our aragonite recrystallization experiments show that at near equilibrium conditions the calcite growth is inhibited in the presence of selenite. Consistent with these observations, our DFT calculations show that the substitution of carbonate for selenite is energetically more favorable at the surface than inside the bulk. The whole set of the experimental and atomistic simulation results leads to the conclusion that the calcite–CaSeO3 solid solution can only grow continuously if the aqueous solution is supersaturated with respect to the bulk solid solution. Under these conditions selenite coprecipitates with calcite at a partition coefficient of D = 0.02 ± 0.01. If the solution is undersaturated with respect to the bulk solid solution, only surface ion-exchange occurs. Elevated selenite concentrations in bulk calcite therefore reflect non-equilibrium conditions

    Thermodynamics of pyrope-majorite, Mg3Al2Si3O12-Mg4Si4O12, solid solution from atomistic model calculations

    Get PDF
    Static lattice energy calculations, based on empirical pair potentials have been performed for a large set of different structures with compositions between pyrope and majorite, and with different states of order of octahedral cations. The energies have been cluster expanded using pair and quaternary terms. The derived ordering constants have been used to constrain Monte Carlo simulations of temperature-dependent properties in the ranges of 1073 3673K and 0 20 GPa. The free energies of mixing have been calculated using the method of thermodynamic integration. At zero pressure the cubic/tetragonal transition is predicted for pure majorite at 3300 K. The transition temperature decreases with the increase of the pyrope mole fraction. A miscibility gap associated with the transition starts to develop at about 2000K and xmaj 0.8, and widens with the decrease in temperature and the increase in pressure. Activity composition relations in the range of 0 20 GPa and 1073 2673K are described with the help of a high-order Redlich Kister polynomial

    ОБСЛУГОВУВАННЯ ЧИТАЧІВ У БІБЛІОТЕКАХ НАВЧАЛЬНИХ ЗАКЛАДІВ ДОРЕВОЛЮЦІЙНОГО КАТЕРИНОСЛАВА

    Get PDF
    Висвітлено історичний розвиток бібліотек навчальних закладів краю, приділена увага процесу обслуговування читацького контингенту освітніх закладів, напрямкам, формам, та характерним рисам. Визначено місце і роль бібліотечних працівників-викладачів.Historical development of educational institutions libraries of Yekaterinoslav region is shown, special attentionis paidto readers’ service in national education, its trends,forms andpeculiar features. The place and role of librarian teachers is defined

    Atomistic model of diopside–K-jadeite (CaMgSi2O6–KAlSi2O6) solid solution

    Get PDF
    Atomistic model was proposed to describe the thermodynamics of mixing in the diopside–K-jadeite solid solution (CaMgSi2O6–KAlSi2O6). The simulations were based on minimization of the latticeenergies of 800 structures within a 2 × 2 × 4 supercell of C2/c diopside with the compositions betweenCaMgSi2O6 and KAlSi2O6 and with variable degrees of order/disorder in the arrangement of Ca/K cations in M2 site and Mg/Al in Ml site. The energy minimization was performed with the help of a force-field model. The results of the calculations were used to define a generalized Ising model, which included 37 pair interaction parameters. Isotherms of the enthalpy of mixing within the range of 273–2023 K were calculated with a Monte Carlo algorithm, while the Gibbs free energies of mixing were obtained by thermodynamic integration of the enthalpies of mixing. The calculated T–X diagram for the system CaMgSi2O6–KAlSi2O6 at temperatures below 1000 K shows several miscibility gaps, which are separated by intervals of stability of intermediate ordered compounds. At temperatures above 1000 K a homogeneous solid solution is formed. The standard thermodynamic properties of K-adeite (KAlSi2O6) evaluated from quantum mechanical calculations were used to determine location of several mineral reactions with the participation of the diopside–K-jadeite solid solution. The results of the simulations suggest that the low content of KalSi2O6 in natural clinopyroxenes is not related to crystal chemical factors preventing isomorphism, but is determined by relatively high standard enthalpy of this end member

    Justification for effective water planning and management in the north of the Sinai Peninsula, Egypt

    Get PDF
    Groundwater is virtually the only source of water supply to the north of the Sinai Peninsula. Propagation conditions for Quaternary aquifers were characterised. Information was updated for all existing hydrogeological wells in the North Sinai area. Well logs for the development of the main Quaternary aquifers were compiled; statistical analysis of permeability parameter values for water-bearing rocks was carried out, based on which the zoning was identified according to the permeability coefficient value

    Absence of strong magnetic fluctuations or interactions in the normal state of LaNiGa2_2

    Full text link
    We present nuclear magnetic (NMR) and qudrupole (NQR) resonance and magnetization data in the normal state of the topological crystalline superconductor LaNiGa2_2. We find no evidence of magnetic fluctuations or enhanced paramagnetism. These results suggest that the time-reversal symmetry breaking previously reported in the superconducting state of this material is not driven by strong electron correlations.Comment: 9 pages, 7 figure

    Order/disorder phase transition in cordierite and its possible relationship to the development of symplectite reaction textures in granulites

    Get PDF
    Based on a consistent set of empirical interatomic potentials, static structure energy calculations of various Al/Si configurations in the supercell of Mg-cordierite and Monte Carlo simulations the phase transition between the orthorhombic and hexagonal modifications of cordierite (Crd) is predicted at 1623 K. The temperature dependences of the enthalpy, entropy, and free energy of the Al/Si disorder were calculated using the method of thermodynamic integration. The simulations suggest that the commonly observed crystallization of cordierite in the disordered hexagonal form could be related to a tendency of Al to occupy T1 site, which is driven by local charge balance. The increase in the Al fraction in the T1 site over the ratio of 2/3(T1): 1/3(T2), that characterizes the ordered state, precludes formation of the domains of the orthorhombic phase. This intrinsic tendency to the crystallization of the metastable hexagonal phase could have significantly postponed the formation of the association of orthorhombic cordierite and orthopyroxene over the association of quartz and garnet in metapelites subjected to granulite facies metamorphism. The textures of local metasomatic replacement (the formation of Crd + Opx or Spr + Crd symplectites between the grains of garnet and quartz) indicate the thermodynamic instability of the association of Qtz + Grt at the moment of the metasomatic reaction. This instability could have been caused by the difficulty of equilibrium nucleation of orthorhombic cordierite
    corecore