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Abstract

Thermodynamic mixing properties and subsolidus phase relations of the rhombohedral carbonate

system, (1-x)·CaCO3-x·MgCO3, were modelled with static structure energy calculations based on

well constrained empirical interatomic potentials. Relaxed static structure energies of a large set of

randomly selected structures in a 4x4x1 supercell of R3̄c calcite (a = 4.988 Å, c = 17.061Å) were

calculated with the General Utitility Lattice Program (GULP). These energies were cluster expanded

in a basis set of 12 pair-wise effective interactions. Temperature-dependent enthalpies of mixing were

calculated by the Monte Carlo method. Free energies of mixing were obtained by thermodynamic

integration of the Monte Carlo results. The calculated phase diagram is in good agreement with

experimental phase boundaries.

Keywords: A. Monte Carlo simulations; B. Rhombohedral carbonates; C. Subsolidus phase relations; D.

Activity-composition relations.

1 Introduction

The rhombohedral calcite-magnesite binary, (1-x)·CaCO3-x·MgCO3, is one of the most well studied

solid solutions in mineralogy. The experimental study of Goldsmith and Heard (1961) identified the

essential features of subsolidus phase relations: two asymmetric miscibility gaps separated by a nar-

row stability field for the dolomite-structure phase. Calorimetric studies by Navrotsky and Capobianco

(1987), Chai et al. (1995), Chai and Navrotsky (1996) and Navrotsky et al. (1999) showed that the

enthalpy of formation of ordered dolomite is negative, relative to a mechanical mixture of calcite and

magnesite, but the formation enthalpy for a disordered solid solution of the same composition is positive.

The magnitude of the enthalpy of disorder is unclear owing to different calorimetric results: 1.23 ± 0.32

(Navrotsky and Capobianco, 1987) for a heat-treated natural sample; and 16.5 ± 2.5 kJ/mol (Navrot-

sky et al., 1999) for a synthetic sample. Burton and Van de Walle (2003) published an extensive data

set of formation energies for various ordered supercells, that were calculated with the Vienna ab initio

simulation package, VASP (Kresse and Furthmüller, 1996). The VASP calculations also yield a nega-

tive formation energy for dolomite and first principles phase diagram calculations based on the VASP

formation energies yield an enthalpy of mixing of ∼6 kJ/mol for the random solid solution at X=0.5.

Various theoretical approaches including the Bragg-Willams model (Navrotsky, 1987; Davidson, 1994),
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different approximations of the cluster variation method (Burton and Kikuchi, 1984; Burton, 1987) and

Monte Carlo simulations (Burton and Van de Walle 2003; Purton et al., 2006) achieve qualitative or semi-

quantitative agreement between predicted and experimentally determined phase relations. None of these

studies, however, produced a mathematically simple activity-composition model consistent with exper-

imental phase boundaries. Such a model is often requested for petrological and environmental studies

which attempt phase equilibrium calculations in chemically complex systems. Here we derive activity-

composition relations with static structure energy (SSE) calculations based on the well constrained set

of empirical interatomic potentials of Rohl et al. (2003) and Austen et al. (2005). Calculations were

performed in the following sequence:

• Testing the empirical interatomic potentials

• SSE calculations on a large set of randomly selected structures

• Fitting a cluster expansion, CE, to the SSE i.e. finding a mathematically simple equation that fits

the excess SSE

• Ground state analysis, i.e. finding the structures with lowest SSE

• Monte Carlo simulations of temperature-dependent properties.

• Thermodynamic integration of the Monte Carlo results to calculate free energies of mixing

• Fit a polynomial to the Monte Carlo free energies and calculate activity-composition relations.

This sequence of calculations yields activity-composition relations, that agree almost quantitatively with

the experimentally determined phase relations.

2 Empirical potentials

Rohl et al. (2003) and Austen et al. (2005) developed a set of interatomic potentials for carbonate miner-

als, which exhibit remarkable accuracy in reproducing the structures of calcite, dolomite, magnesite and

aragonite; and available elastic stiffness data on calcite and magnesite. A good description of the struc-

ture and elasticity data does not, however, guarantee accurate predictions of energy differences between

differently ordered supercells. To test the empirical-potential based GULP (Gale, 1997; Gale and Rohl,
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Figure 1: Correlation between the excess energies of a selected set of ordered structures calculated with
parameterized force field (Austen et al., 2005) and VASP (Burton and Van de Walle, 2003) methods.

2003) SSEs, we compare them to VASP-SSE for the same set of ordered structures, that Burton and Van

de Walle (2003) considered. In Fig. 1 we plot the GULP-SSE vs. VASP-SSE. The plot includes all

structures described by Burton and Van de Walle (2003) except for the huntite, Ca3Mg(CO3)4 structure,

for which: SSE-GULP=28.72 kJ/mol; SSE-VASP=44.73 kJ/mol. This large difference in excess energy

is related to the difference between CO3-group orientations in huntite vs. that in calcite and magnesite.

The good correlation between the GULP and VASP sets suggests that the Austen et al. (2005) potentials

essentially reproduce the energetics of cation mixing/ordering.

3 Supercell SSE calculations

We use a 4x4x1 supercell of R3̄c calcite (a = 4.988Å, c = 17.061Å) that contains 96 exchangeable

(Ca,Mg) atoms. We start in the ordered dolomite structure, in which Ca and Mg occupy alternate layers

perpendicular to the c axis, and generate several structures, with compositions between calcite and mag-

nesite, by replacing appropriate numbers of Ca or Mg atoms with Mg and Ca atoms, respectively. Cation

distributions in structures with compositions x = 0.125, x = 0.25, x = 0.375, x = 0.5, x = 0.625,

x = 0.75 and x = 0.875 were varied by randomly swapping selected atoms pairs. Swapping was

repeated 100 times at each composition and fully relaxed static GULP-SSEs were calculated for each

structure. Excess energies of these 700 structures are plotted in Fig. 2. This plot outlines only the gen-

eral shape and magnitude of the enthalpy of mixing. Calculating enthalpy isotherms requires additional
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Figure 2: Excess static structure energies for 700 structures that were calculated with the interatomic
potentials of (Austen et al., 2005). The dashed line connects minimum energy structures at each compo-
sition; calcite, dolomite and magnesite are the only predicted ground states (solid line).

effort.

4 The cluster expansion

Constructing isotherms requires Boltzmann averaging over many configurations at each composition

in a sufficiently large supercell. Precise estimates of the average energies can be made with a Monte

Carlo algorithm, but computational efficiency requires more rapid SSE calculations than GULP permits.

Therefore, the cluster expansion (CE) method (Connolly and Williams, 1983; Sanchez et al., 1984) is

used to speed up calculations. The CE is compact set of effective interactions, which in its simplest form

(Dove, 1999; Becker et al., 2000; Vinograd, 2001) maps the excess energy, Ei, of structure-i onto a set

of effective pair interactions, J (n); that are coupled to the frequencies of AB pairs, f
(n)

AB in structure-i:

Ei = 1/2
∑
n

f
(n)

ABJ (n) + E0, (1)

n is the order of the near-neighbour pair, which increases with interneighbour separation, and E0

is a configuration independent strain energy. In solid solutions with size mismatch E0 represents the

global strain that is caused by substituting smaller ions (Mg) into larger-ion-rich (Ca-rich) crystals, or

larger ions (Ca) in smaller-ion-rich (Mg-rich) crystals. Ferreira et al. (1988) demonstrated that this

strain energy is maximized at an intermediate composition, typically not x = 0.5, such that it varies
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superquadradically with composition. We approximate this variation with a two-parameter polynomial:

E0 = x1x2(x1A12 + x2A21). (2)

For each of the 700 structures we calculated frequencies of of AB-type (Mg-Ca) pairs at 12 distances

ranging from 3.8 to 10.4 A. The frequencies and the energies form an overdetermined system of 700

equations, which were solved for J (n) , A12 and A21 using a least-squares minimization.

Figure 3 is a plot of excess energies for the 700 structures that were calculated with the CE vs. those

calculated with GULP. Each J (n) corresponds to the energy of the exchange reaction Ca-Ca + Mg-Mg =

2Ca-Mg at the n-th neighbor distance. Negative Js indicate an ordering tendency (Ca-Mg pairs favored)

and positive values indicate a clustering tendency (Ca-Ca and Mg-Mg pairs favored). The best fit for

E0 was A12=49.128 and A21=36.542 kJ/mol. When only pair, or other even-order (pair=2-, 4-, 6-,...

2n-body) interactions are used, calculated phase diagrams have mirror symmetry about x = 0.5; thus,

the E0 term is the only source of phase diagram asymmetry in this model. The inequality A12 〉 A21

reflects the higher energy that is required to substitute larger Ca2+ ions into a Mg-rich crystal; relative

to the smaller energy required to substitute a Mg2+ ion into a Ca-rich crystal. The Js are plotted in Fig.

4 as functions of interatomic separation. The remarkable feature of Fig. 4 is the large negative value of

J (4). This result was interpreted as reflecting the high stiffness of the structure along the 4’th neighbor

pair, caused by the presence of rigid CO3 group between the exchangeable atoms (Vinograd, 2006a).

Note however, that the Burton and Van de Walle (2003) CE predicts opposite character for J (4), such

that it favors Ca-Ca and Mg-Mg 4’th neighbor pairs. The essential differences between the CE derived

here and the CE in Burton and Van de Walle (2003) are that the latter: 1) includes some 3-body effective

interactions, which determine phase diagram asymmetry; 2) does not include an E0 term; 3) uses a cross

validation score statistical test to chose which Js to include in the CE and which VASP structure energies

to use for fitting the CE. The cross validation score test has two significant advantages relative to least

squares: 1) the CE is optimized for accuracy of prediction rather than minimization of residuals; 2) the

number of effective interactions in the CE optimized rather than arbitrarily truncated.

6



-4 -2 0 2 4 6 8
Excess energy (SSE), kJ/mol

-4

-2

0

2

4

6

8

Fi
tte

d 
en

er
gy

, k
J/

m
ol

Figure 3: Correlations between the energies of 700 structures calculated with GULP and those calculated
with the cluster expansion).
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Figure 4: The cluster expansion of pair-wise effective interactions for the calcite-magnesite system as
functions of interatomic separation.
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Table 1: Pair-wise effective interactions and their type: 1-interlayer, 2-intralayer.

n Distance, Å Type Jn, kJ/mol
1 3.844 1 -10.200
2 4.852 2 8.563
3 5.964 2 0.931
4 6.190 1 -3.863
5 7.688 2 -0.780
6 7.865 1 1.991
7 7.897 1 -0.982
8 8.403 2 -1.655
9 9.091 2 -0.826

10 9.269 1 -0.111
11 9.703 2 -0.305
12 10.437 1 0.610

5 Ground state analysis

Figure 3 shows that Equation 1 provides a good fit to the 700 randomly generated configurations. This

does not, however, ensure that the CE will correctly predict ground states. Low-energy structures in the

4x4x1 supercell were predicted with Monte Carlo annealing simulations, with the feedback algorithm of

Vinograd et al. (2006b): 1) the temperature is set at a high value, then slowly decreased until exchange-

able atoms freeze into the state of lowest energy; 2) the GULP-SSE for this structure is calculated, and

often this energy differs significantly from the CE-calculated value; 3) the CE is updated and steps 1)

and 2) are repeated. The quality of the CE improves automatically. When the energy difference be-

tween CE- and GULP-calculated energies is large, the correlation coefficient goes down significantly

and the Js and Aij change to improve the fit. The CE-predicted minima, (including ground states at

x = 0, 1/2, and 1.0) are plotted together with the energies of randomly selected structures in Fig. 2.

Consistent with Burton and Van de Walle (2003), we find that dolomite + calcite and dolomite + mag-

nesite are the only stable ground state assemblages. The final CE pair interactions are listed in Table 1.

Final values for the E0 parameters are A12 = 46.447 kJ/mol and A21 = 34.151 kJ/mol; similar to those

calculated from the set of randomly selected structures, A12=49.128 kJ/mol and A21=36.542 kJ/mol.
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6 Monte Carlo simulations

Rapid convergence of the CE as a function of interatomic separation (Fig. 4) suggests that Equation

1 is applicable for calculations of excess energies in a much larger supercell. Sufficient supercell size

for thermodynamically meaningful results can be estimated by performing Monte Carlo simulations in

supercells of increasing size. The thermodynamic limit is achieved when the predicted properties such

as temperatures of order/disorder transitions does not change with the further increase in the size of the

supercell. In this study we have used the 12x12x3 supercell of calcite containing 2592 exchangeable

atoms. Additional calculations using 16x16x4 supercell (6144 atoms) have shown that the simulated

temperature of the order/disorder transition at dolomite composition (T=1345± 25 K) does not differ

within the error limits from the result obtained with the 12x12x3 supercell (Fig. 5). The smaller supercell

was used then for the calculations of the thermodynamic properties. At each step of the Monte Carlo

run we create a new configuration by swapping a randomly chosen pairs of cations. The acceptance

probability, ξ, for a candidate configuration depends on temperature and the energy difference, ∆E,

between the two configurations

ξ = 1, ∆E < 0

ξ = exp(−∆E/(kT )), ∆E > 0
(3)

This acceptance rule converges the set of configurations to the Boltzmann distribution (Metropolis et

al. 1953). Simulations were performed on a grid of 48 compositions between calcite and dolomite and 15

temperatures between 623 and 2023 K. Six billion Monte Carlo steps were used to achieve equilibrium

and another six billion steps were used to calculate averages. These simulations were performed with a

constant E0 = 0 term to suppress phase separation; a procedure that necessarily yields a phase diagram

with mirror symmetry about x = 0.5. Composition-dependent E0 values and average enthalpies were

subsequently combined to calculate enthalpy of mixing isotherms (Fig. 6).

7 Thermodynamic integration

Myers et al. (1998) and Dove (2001) demonstrated that the configurational free energy can be calculated

from Monte Carlo averaged excess energies via λ−integration:
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Figure 5: Enthalpy of disorder at the dolomite composition calculated with the Monte Carlo method.
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Figure 6: Enthalpy of mixing isotherms calculated with the Monte Carlo method.
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F = F0 +
∫ λ

0
Eλdλ. (4)

F0 is the free energy of mixing of the solid solution with zero ordering energy, which can be calcu-

lated theoretically:

F0 = RT (xMg ln(xMg) + xCa ln(xCa)). (5)

Eλ is the average energy of the system in a state with a non-equilibrium intermediate degree of order

which is defined by λ, 0 < λ < 1. The integral describes the change in free energy as the degree of order

changes from zero to its equilibrium value. An intermediate degree of order is simulated by scaling the

Js according to the equation Jλ
n =λJn. In our simulations, λ was gradually increased from 0 to 1 with a

step size of 0.04.

Computational times required for these free energies of mixing, which include temperature depen-

dent configurational entropies, were 26 times longer than those for enthalpies. Configurational entropy

isotherms were calculated with

S = (F − E)/T (6)

and are plotted in Figure 7. The remarkable features of this plot are the minima at x = 0.5, x = 0.25

and x = 0.75. The sharp minimum at x = 0.5 is caused by dolomite-type ordering, and the two broad

minima at x = 0.25 and x = 0.75 correspond to dolomite-related structures that have different stacking

sequences for Ca- and Mg-rich layers. The Monte Carlo simulated low-temperature cation distribution

at x = 0.25 (Fig. 8) is the ε-dolomite structure, which is a layer structure with layer-sequence Mg-Ca-

Ca-Ca-...perpendicular to chex. The Mg-Ca-Ca-... sequence (δ-dolomite) is also observed locally, but

because the supercell with 18 layers in the z direction is incommensurate with the four-layer sequence,

its’ low-energy structure is not explicitly calculated. Metastable formation of ε-dolomite is consistent

with the first principles calculations of Burton and Van de Walle (2003), which suggested that ε-dolomite

has the lowest formation-energy at x = 1/4 and x = 3/4.
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Figure 7: Configurational entropy isotherms that were calculated by thermodynamic integration.

Figure 8: Monte Carlo simulated cation distribution (Ca-red, Mg-green) at x=0.25, T=623 K.
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8 The phase diagram

Free energies of mixing are plotted in Fig. 9. They were converted to a phase diagram by: comparing the

free energy at each composition xi along an isotherm to the free energy of a mechanical mixture xj + xk.

If there is a pair of compositions xj + xk, that has lower free energy, the solution with composition xi

is unstable or metastable (white in Fig. 10) The two miscibility gaps separated by the dolomite field are

easily outlined. The calculated diagram is compared to experimental data from Goldsmith (1983), and

agreement is nearly quantitative. The difference is that in the calculated diagram the miscibility gap on

the Ca-rich side is slightly shifted to more Ca-rich compositions.

9 Activity-composition relations

Redlich-Kister polynomials (Redlich and Kister, 1948) are convenient for describing excess free ener-

gies of mixing, but these equations fail in systems with strong ordering at intermediate compositions.

The rapid decrease in free energy from dolomite-ordering at x =0.5 can be parameterized with nega-

tively shaped gaussians. The combination of Redlich-Kister polynomials and gaussians is very effective

for fitting free energies of mixing in systems with intense ordering at intermediate compositions (e.g.

Vinograd, 2002; Vinograd and Sluiter, 2006). The total excess free energy of mixing can be described

with the equation

Gexcess = x1x2

n∑
i=1

Ai(x1 − x2)
(i−1) + x1x2

m∑
j=1

BJ exp(Cj(x1 − xj)
2) (7)

where Ai, Bi and Ci are further expanded as functions of temperature Ai = Ah
i −TAs

i , Bi = Bh
i −TBs

i ,

Ci = Ch
i − TCs

i ; x1 and x2 are the mole fractions of end-members; and xjis the mole fraction, of

ordered compound j. Figure 9 illustrates the accuracy of Eqn. 7-fit to Monte Carlo simulated free

energies of mixing. The Ai, Bi and Ci coefficients are listed in Tables 2 and 3. Figure 11 is a plot of

activity-composition relations, which were derived from fitted free energies of mixing.

13



0 0.2 0.4 0.6 0.8 1
Mole fraction of magnesite

-6

-4

-2

0

Fr
ee

 e
ne

rg
y 

of
 m

ix
in

g,
 k

J/
m

ol

623 K

2023 K

Figure 9: Free energy of mixing isotherms calculated by thermodynamic integration (solid lines) and fit
to Equation 7 (dashed lines). The fit applies only to the temperature range 623-1323 K.

Figure 10: The calcite-magnesite phase diagram. Gray and white areas indicate stable and unstable
(or metastable) states, respectively; predicted by Monte Carlo simulations. Symbols and solid lines are
experimental data from Goldsmith (1983).
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Table 2: Coefficients of the Redlich-Kister polynomial (Ah
i in kJ/mol, As

i in kJ/K/mol)

i Ah
i As

i ∗ 103

1 11.8948 -3.2801
2 6.0778 -0.0866
3 5.6420 -8.5177
4 0.5705 0.5624
5 10.5240 12.4392
6 -0.6759 -0.6519

Table 3: Coefficients of the gaussians (Bh
i and Ch

i in kJ/mol, Bs
i and Cs

i in kJ/K/mol)

j x Bh
j Bs

j ∗ 103 Ch
j Cs

j

1 0.50 -16.7374 -10.6106 10.1136 0.0388
2 0.50 -5.9028 -4.3690 8.5369 0.2051
3 0.5 -3.7182 -2.5465 -447.3994 1.2768
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Figure 11: Fitted activities of calcite and magnesite (solid and dashed lines, respectively) in the interval
623-1323 K.
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10 Discussion and Conclusions

Realistic activity-composition relations for carbonates were calculated with well-constrained empirical

interatomic potentials. Good agreement between predicted and experimentally determined phase re-

lations indicates that the simulations reproduce the main thermodynamic effects of mixing and cation

order/disorder in the rhombohedral carbonates. The main difference between experiment and calcula-

tion is that the Ca-rich calcite + dolomite field is slightly shifted to more Ca-rich compositions. This

might be the result of performing the simulations in the static limit. Burton and van de Walle (2006)

demonstrated that including excess vibrational entropy in a first principles phase diagram calculation for

the system NaCl-KCl leads to a dramatic improvement in the calculated consolute temperature. Also,

Vinograd and Sluiter (2006) have shown that excess vibrational entropy plays a significant role in the

subsolidus phase relations of pyrope-grossular, Mg3Al2Si3O12 - Ca3Al2Si3O12, garnets. Both the ex-

perimental data (Haselton and Westrum, 1980; Dachs and Geiger, 2006) and the calculations (Vinograd

and Sluiter, 2006) show that the excess entropy in Ca-Mg-garnets achieves about 1-1.5 J/K per mole of

exchangeable atoms at intermediate compositions. Vinograd and Sluiter (2006) demonstrated that the

positive excess entropy in the pyrope-grossular system appears as a consequence of the size-mismatch

between end-members. Their results suggested also that the maximum of the excess effect is shifted in

the direction of the end-member with the largest volume. If the same trend holds for carbonates, the ex-

cess entropy would make Ca-rich compositions more stable, and this would improve agreement between

calculations and experiment. This assumption should be tested in future simulation studies.

The predicted excess enthalpy for ordered dolomite, -4.0 kJ/mol, is in good agreement with the ex-

perimental value, -5.74 ± 0.25 kJ/mol [Navrotsky and Capobianco (1987)] and with the ab initio VASP

result, -3.66 kJ/mol, [Burton and Van de Walle (2003)]. The predicted equilibrium excess enthalpy of

dolomite, -0.5 kJ/mol at 1523 K 5, is in reasonable agreement with the value of 1.23 ± 0.32 kJ/mol

measured by Navrotsky and Capobianco (1987) for a sample of Eugui dolomite that was heat-treated

at 1523K. The value of 16.5 ± 2.5 kJ/mol measured by Navrotsky et al. (1999) for a synthetic dis-

ordered dolomite cannot be explained by the present model. According to our simulations (Fig. 2), a

random Ca/Mg configuration contributes only 6-8 kJ/mol to the excess enthalpy of dolomite. The present

model also contradicts calorimetric measurements of Chai et al. (1995), which suggested that the en-

thalpies of formation of diagenetic Ca-rich dolomites are significantly higher than those of isochemical
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calcite + magnesite mechanical mixtures. Note that our model only includes the effects of the cation

order/disorder, and ignores orientational order-disorder of the CO3 groups. The CO3-group orientational

order-disorder ( R3̄c/ R3̄m) transition in calcite occurs at about 1260 K (Dove and Powell, 1989; Dove et

al. 2005). It is possible that some CO3-group disordering could be quenched during the heat treatments

of natural dolomite samples. This effect might explain the difference of 1.72 kJ/mol between the excess

energy of the heat-treated dolomite measured by Navrotsky and Capobianco (1987) and our value of -0.5

kJ/mol at 1523 K. The very large value of the excess energy of 16.5 ± 2.5 kJ/mol measured by Navrotsky

et al. (1999) for a synthetic dolomite might be caused by orientational disorder. The low temperature

of the synthesis (70 ◦C) might not be sufficient for CO3 groups to reorder themselves into to the lowest

energy configuration. The same argument might apply to the high excess enthalpies of diagenetic Ca-

rich dolomites measured by Chai et al. (1995). VASP calculations of Burton and Van de Walle (2003)

have shown the very high energy of formation for huntite-structure Ca3Mg(CO3)4 (a structure, in which

CO3-group orientation differs from that of calcite and dolomite). This structure was derived from the

naturally occurring Mg3Ca(CO3)4 huntite (Dollase and Reeder, 1986) by substituting Ca for Mg and Mg

for Ca. The very high formation energy of this structure (44.73 kJ/mol (VASP), 28.72 kJ/mol (GULP))

suggests that even a small concentration of huntite-like domains could significantly increase enthalpies

of formation in Ca-rich dolomites. Transmission electron microscopy studies of Ca-rich dolomites in

pre-Holocene rocks often reveal modulation with lamellar spacing of 100-200 Å (Wenk et al. 1983).

Crystal structure refinements of two such samples within the R3̄ space group of dolomite have shown

poor fits and indicated that one of the components of the modulated structure should have mixed occu-

pancy in cation layers (Reeder, 2000). Huntite, Ca3Mg(CO3)4 , having mixed (ordered) arrangement of

Ca and Mg in dolomite-like cation layers satisfies this criterion. An increase in the fraction of huntite-

like domains within the modulated structure could explain the correlation of the excess enthalpies of

Ca-rich dolomites with mole fraction of calcite (Chai et al., 1995). This hypothesis should be tested in

future simulation studies, and by electron microscopy studies of natural samples. Success of the present

model in reproducing the phase diagram without accounting for phases with CO3-group orientational

disorder suggests, however, that the miss-orientation of the CO3-groups plays a minor role in determin-

ing equilibrium subsolidus phase relations. The very high formation energies of these structural defects

is consistent with the observation of Reeder and Nakajima (1982) that thermal disorder of dolomite pro-

duces twin domains boundaries (TDB) rather than anti-phase boundaries (APB). The difference is that

17



an APB implies misaligned CO3-groups as well as misaligned cation layers, whereas the TDB only has

a cation mismatch, without CO3-group orientational mismatch.
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