2,541 research outputs found

    Suzaku X-Ray Imaging and Spectroscopy of Cassiopeia A

    Full text link
    Suzaku X-ray observations of a young supernova remnant, Cassiopeia A, were carried out. K-shell transition lines from highly ionized ions of various elements were detected, including Chromium (Cr-Kalpha at 5.61 keV). The X-ray continuum spectra were modeled in the 3.4--40 keV band, summed over the entire remnant, and were fitted with a simplest combination of the thermal bremsstrahlung and the non-thermal cut-off power-law models. The spectral fits with this assumption indicate that the continuum emission is likely to be dominated by the non-thermal emission with a cut-off energy at > 1 keV. The thermal-to-nonthermal fraction of the continuum flux in the 4-10 keV band is best estimated as ~0.1. Non-thermal-dominated continuum images in the 4--14 keV band were made. The peak of the non-thermal X-rays appears at the western part. The peak position of the TeV gamma-rays measured with HEGRA and MAGIC is also shifted at the western part with the 1-sigma confidence. Since the location of the X-ray continuum emission was known to be presumably identified with the reverse shock region, the possible keV-TeV correlations give a hint that the accelerated multi-TeV hadrons in Cassiopeia A are dominated by heavy elements in the reverse shock region.Comment: Publ. Astron. Soc. Japan 61, pp.1217-1228 (2009

    Staggered Fermions and Gauge Field Topology

    Get PDF
    Based on a large number of smearing steps, we classify SU(3) gauge field configurations in different topological sectors. For each sector we compare the exact analytical predictions for the microscopic Dirac operator spectrum of quenched staggered fermions. In all sectors we find perfect agreement with the predictions for the sector of topological charge zero, showing explicitly that the smallest Dirac operator eigenvalues of staggered fermions at presently realistic lattice couplings are insensitive to gauge field topology. On the smeared configurations, 4ν4\nu eigenvalues clearly separate out from the rest on configurations of topological charge ν\nu, and move towards zero in agreement with the index theorem.Comment: LaTeX, 10 page

    The VLT-FLAMES Tarantula Survey X: Evidence for a bimodal distribution of rotational velocities for the single early B-type stars

    Full text link
    Aims: Projected rotational velocities (\vsini) have been estimated for 334 targets in the VLT-FLAMES Tarantula survey that do not manifest significant radial velocity variations and are not supergiants. They have spectral types from approximately O9.5 to B3. The estimates have been analysed to infer the underlying rotational velocity distribution, which is critical for understanding the evolution of massive stars. Methods: Projected rotational velocities were deduced from the Fourier transforms of spectral lines, with upper limits also being obtained from profile fitting. For the narrower lined stars, metal and non-diffuse helium lines were adopted, and for the broader lined stars, both non-diffuse and diffuse helium lines; the estimates obtained using the different sets of lines are in good agreement. The uncertainty in the mean estimates is typically 4% for most targets. The iterative deconvolution procedure of Lucy has been used to deduce the probability density distribution of the rotational velocities. Results: Projected rotational velocities range up to approximately 450 \kms and show a bi-modal structure. This is also present in the inferred rotational velocity distribution with 25% of the sample having 00\leq\ve\leq100\,\kms and the high velocity component having \ve250\sim 250\,\kms. There is no evidence from the spatial and radial velocity distributions of the two components that they represent either field and cluster populations or different episodes of star formation. Be-type stars have also been identified. Conclusions: The bi-modal rotational velocity distribution in our sample resembles that found for late-B and early-A type stars. While magnetic braking appears to be a possible mechanism for producing the low-velocity component, we can not rule out alternative explanations.Comment: to be publisged in A&

    Modified Dark Matter in Galaxies and Galaxy Clusters

    Full text link
    Modified Dark Matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics, that naturally accounts for the universal acceleration constant observed in galactic rotation curve data; a critical acceleration related to the cosmological constant, Λ\Lambda, appears as a phenomenological manifestation of MDM. We show that the resulting mass profiles, which are sensitve to Λ\Lambda, are consistent with observations at the galactic and galaxy cluster scales. Our results suggest that dark matter mass profiles contain information about the cosmological constant in a non-trivial way.Comment: To be published in the Proceedings of the Bahamas Advanced Study Institute and Conferences (BASIC

    Small eigenvalues of the SU(3) Dirac operator on the lattice and in Random Matrix Theory

    Get PDF
    We have calculated complete spectra of the staggered Dirac operator on the lattice in quenched SU(3) gauge theory for \beta = 5.4 and various lattice sizes. The microscopic spectral density, the distribution of the smallest eigenvalue, and the two-point spectral correlation function are analyzed. We find the expected agreement of the lattice data with universal predictions of the chiral unitary ensemble of random matrix theory up to a certain energy scale, the Thouless energy. The deviations from the universal predictions are determined using the disconnected scalar susceptibility. We find that the Thouless energy scales with the lattice size as expected from theoretical arguments making use of the Gell-Mann--Oakes--Renner relation.Comment: REVTeX, 5 pages, 4 figure

    Domain wall fermion zero modes on classical topological backgrounds

    Full text link
    The domain wall approach to lattice fermions employs an additional dimension, in which gauge fields are merely replicated, to separate the chiral components of a Dirac fermion. It is known that in the limit of infinite separation in this new dimension, domain wall fermions have exact zero modes, even for gauge fields which are not smooth. We explore the effects of finite extent in the fifth dimension on the zero modes for both smooth and non-smooth topological configurations and find that a fifth dimension of around ten sites is sufficient to clearly show zero mode effects. This small value for the extent of the fifth dimension indicates the practical utility of this technique for numerical simulations of QCD.Comment: Updated fig. 3-7, small changes in sect. 3, added fig. 8, added more reference

    Chiral Condensate in the Deconfined Phase of Quenched Gauge Theories

    Get PDF
    We compute the low lying spectrum of the overlap Dirac operator in the deconfined phase of finite-temperature quenched gauge theory. It suggests the existence of a chiral condensate which we confirm with a direct stochastic estimate. We show that the part of the spectrum responsible for the chiral condensate can be understood as arising from a dilute gas of instantons and anti-instantons.Comment: Revtex, 16 pages, 3 postscript figure

    Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire

    Full text link
    Soon after the first measurements of nuclear magnetic resonance (NMR) in a condensed matter system, Bloch predicted the presence of statistical fluctuations proportional to 1/N1/\sqrt{N} in the polarization of an ensemble of NN spins. First observed by Sleator et al., so-called "spin noise" has recently emerged as a critical ingredient in nanometer-scale magnetic resonance imaging (nanoMRI). This prominence is a direct result of MRI resolution improving to better than 100 nm^3, a size-scale in which statistical spin fluctuations begin to dominate the polarization dynamics. We demonstrate a technique that creates spin order in nanometer-scale ensembles of nuclear spins by harnessing these fluctuations to produce polarizations both larger and narrower than the natural thermal distribution. We focus on ensembles containing ~10^6 phosphorus and hydrogen spins associated with single InP and GaP nanowires (NWs) and their hydrogen-containing adsorbate layers. We monitor, control, and capture fluctuations in the ensemble's spin polarization in real-time and store them for extended periods. This selective capture of large polarization fluctuations may provide a route for enhancing the weak magnetic signals produced by nanometer-scale volumes of nuclear spins. The scheme may also prove useful for initializing the nuclear hyperfine field of electron spin qubits in the solid-state.Comment: 18 pages, 5 figure

    Pathologies of Quenched Lattice QCD at non--zero Density and its Effective Potential

    Get PDF
    We simulate lattice QCD at non--zero baryon density and zero temperature in the quenched approximation, both in the scaling region and in the infinite coupling limit. We investigate the nature of the forbidden region -- the range of chemical potential where the simulations grow prohibitively expensive, and the results, when available, are puzzling if not unphysical. At weak coupling we have explored the sensitivity of these pathologies to the lattice size, and found that using a large lattice (64×16364 \times 16^3) does not remove them. The effective potential sheds considerable light on the problems in the simulations, and gives a clear interpretation of the forbidden region. The strong coupling simulations were particularly illuminating on this point.Comment: 49 pages, uu-encoded expanding to postscript;also available at ftp://hlrz36.hlrz.kfa-juelich.de/pub/mpl/hlrz72_95.p

    Quenched Approximation Artifacts: A study in 2-dimensional QED

    Full text link
    The spectral properties of the Wilson-Dirac operator in 2-dimensional QED responsible for the appearance of exceptional configurations in quenched simulations are studied in detail. The mass singularity structure of the quenched functional integral is shown to be extremely compicated, with multiple branch points and cuts. The connection of lattice topological charge and exactly real eigenmodes is explored using cooling techniques. The lattice volume and spacing dependence of these modes is studied, as is the effect of clover improvement of the action. A recently proposed modified quenched approximation is applied to the study of meson correlators, and the results compared with both naive quenched and full dynamical calculations of the same quantity.Comment: 34 pages (Latex) plus 9 embedded figures; title change
    corecore