55 research outputs found

    Lectin-like bacteriocins from pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor

    Get PDF
    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins

    Dominant Negative Mutants of Bacillus thuringiensis Cry1Ab Toxin Function as Anti-Toxins: Demonstration of the Role of Oligomerization in Toxicity

    Get PDF
    BACKGROUND:Bacillus thuringiensis Cry toxins, that are used worldwide in insect control, kill insects by a mechanism that depends on their ability to form oligomeric pores that insert into the insect-midgut cells. These toxins are being used worldwide in transgenic plants or spray to control insect pests in agriculture. However, a major concern has been the possible effects of these insecticidal proteins on non-target organisms mainly in ecosystems adjacent to agricultural fields. METHODOLOGY/PRINCIPAL FINDINGS:We isolated and characterized 11 non-toxic mutants of Cry1Ab toxin affected in different steps of the mechanism of action namely binding to receptors, oligomerization and pore-formation. These mutant toxins were analyzed for their capacity to block wild type toxin activity, presenting a dominant negative phenotype. The dominant negative phenotype was analyzed at two levels, in vivo by toxicity bioassays against susceptible Manduca sexta larvae and in vitro by pore formation activity in black lipid bilayers. We demonstrate that some mutations located in helix alpha-4 completely block the wild type toxin activity at sub-stoichiometric level confirming a dominant negative phenotype, thereby functioning as potent antitoxins. CONCLUSIONS/SIGNIFICANCE:This is the first reported case of a Cry toxin dominant inhibitor. These data demonstrate that oligomerization is a fundamental step in Cry toxin action and represent a potential mechanism to protect special ecosystems from the possible effect of Cry toxins on non-target organisms

    The Versatility of the Helicobacter pylori Vacuolating Cytotoxin VacA in Signal Transduction and Molecular Crosstalk

    Get PDF
    By modulating important properties of eukaryotic cells, many bacterial protein toxins highjack host signalling pathways to create a suitable niche for the pathogen to colonize and persist. Helicobacter pylori VacA is paradigm of pore-forming toxins which contributes to the pathogenesis of peptic ulceration. Several cellular receptors have been described for VacA, which exert different effects on epithelial and immune cells. The crystal structure of VacA p55 subunit might be important for elucidating details of receptor interaction and pore formation. Here we discuss the multiple signalling activities of this important toxin and the molecular crosstalk between VacA and other virulence factors

    Helicobacter pylori Counteracts the Apoptotic Action of Its VacA Toxin by Injecting the CagA Protein into Gastric Epithelial Cells

    Get PDF
    Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host

    A Broad-Host-Range Tailocin from Burkholderia cenocepacia

    No full text

    Correlation of wbiI Genotype, Serotype, and Isolate Source within Species of the Burkholderia cepacia Complex

    No full text
    Gram-negative bacteria of the Burkholderia cepacia complex (Bcc) are opportunistic pathogens that can infect the lungs of cystic fibrosis (CF) patients and can be transmitted among these patients, causing epidemics in the CF community. Lipopolysaccharide (LPS) is an important virulence factor of many gram-negative bacteria, with the O antigen component of LPS being responsible for serotype specificity. The goal of this work was to develop a genetic method of determining the serotype of Bcc isolates based on the conserved gene wbiI. Homologues of wbiI are found in polysaccharide biosynthesis gene clusters in other bacteria. Primers to a conserved region of the Bcc wbiI gene were able to amplify by PCR a single product in 67 of 80 Bcc isolates tested. Sequencing and restriction enzyme digestion of this wbiI PCR product revealed sufficient DNA polymorphisms to distinguish and group various isolates. In five of nine instances, Bcc isolates of a single serotype had a single wbiI restriction fragment length polymorphism (RFLP) pattern, while isolates of the other four serotypes could have multiple wbiI RFLP types. Species determination of the Bcc isolates revealed no obvious correlation between wbiI RFLP type and species. There was also no apparent correlation between wbiI RFLP type and the ability of a single Bcc isolate to infect an individual with CF. However three of five Bcc outbreaks involved isolates with the same wbiI RFLP type, indicating that wbiI RFLP typing may be a useful tool to help track Bcc outbreaks

    A dominant-negative therapy for anthrax

    No full text

    Reconstitution of O-Specific Lipopolysaccharide Expression in Burkholderia cenocepacia Strain J2315, Which Is Associated with Transmissible Infections in Patients with Cystic Fibrosis

    No full text
    Burkholderia cenocepacia is an opportunistic bacterium that infects patients with cystic fibrosis. B. cenocepacia strains J2315, K56-2, C5424, and BC7 belong to the ET12 epidemic clone, which is transmissible among patients. We have previously shown that transposon mutants with insertions within the O antigen cluster of strain K56-2 are attenuated for survival in a rat model of lung infection. From the genomic DNA sequence of the O antigen-deficient strain J2315, we have identified an O antigen lipopolysaccharide (LPS) biosynthesis gene cluster that has an IS402 interrupting a predicted glycosyltransferase gene. A comparison with the other clonal isolates revealed that only strain K56-2, which produced O antigen and displayed serum resistance, lacked the insertion element inserted within the putative glycosyltransferase gene. We cloned the uninterrupted gene and additional flanking sequences from K56-2 and conjugated this plasmid into strains J2315, C5424, and BC7. All the exconjugants recovered the ability to form LPS O antigen. We also determined that the structure of the strain K56-2 O antigen repeat, which was absent from the LPS of strain J2315, consisted of a trisaccharide unit made of rhamnose and two N-acetylgalactosamine residues. The complexity of the gene organization of the K56-2 O antigen cluster was also investigated by reverse transcription-PCR, revealing several transcriptional units, one of which also contains genes involved in lipid A-core oligosaccharide biosynthesis

    Identification of Burkholderia cepacia complex bacteria with a lipopolysaccharide-specific monoclonal antibody

    No full text
    The genus Burkholderia includes many bacteria that cause serious human infections. As is the case with other Gram-negative bacteria, Burkholderia species produce LPS, which is an abundant component of the bacterial cell surface. Burkholderia cepacia complex (Bcc) bacteria (which include at least 17 separate species) produce LPS structures that are quite different. In an attempt to determine the degree of LPS epitope variation among Bcc species, a mAb was produced, designated 5D8, specific for the LPS of B. cepacia. Western blot analysis determined that mAb 5D8 was able to produce the classic β€˜ladder pattern’ when used to probe B. cepacia and Burkholderia anthina lysates, although 5D8 did not produce this pattern with the other seven Bcc species tested. mAb 5D8 reacted with varying intensity to most but not all of the additional B. cepacia and B. anthina strains tested. Therefore, there seems to be significant epitope variation among Bcc LPS both between and within species. Additionally, mAb 5D8 reacted with a proteinase-K-sensitive 22β€…kDa antigen in all Bcc strains and also in a strain of Burkholderia pseudomallei
    • …
    corecore