4 research outputs found

    Mountain grassland ecosystems on abandoned agricultural terraces (Russia, North Caucasus)

    Get PDF
    Terraces represent one of the most common agricultural landscape elementsin the mountainous regions of the North Caucasus. In the Central and WestCaucasus, most of the arable terraces were converted into grasslands for grazing and haymaking 60–70 years ago and then abandoned or underused during the last 20–25 years. Te role of abandoned terraces in maintaining the diversity of grasslands of the mountain slopes was studied in the case of eight terraces of different types. Plant communities of subalpine meadows and meadow steppes were distinguished on the terraces depending mainly on slope steepness at the same altitudes and to a lesser extent on the slope aspect. In general, the grasslands of the terrace platforms and those of original unterraced slopes had similar traits. At that, the mesophilous communities on the rich soils of terrace edges and scarp communities similar to vegetation of steep slopes with eroded soils create regular patterns on the terraced slopes. Tus, former agricultural terraces conditioning geodiversity also contribute to the diversity of plant communities and landscape fragmentation. Te current increase of temperature and humidity may lead to a reduction of climatic differences of the slopes, and the further convergence of grassland communities can be assumed

    Temperature-dependent development of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and its larval parasitoid, Habrobracon hebetor (Say) (Hymenoptera: Braconidae): implications for species interactions

    Get PDF
    Habrobracon hebetor (Say) is a parasitoid of various Lepidoptera including Helicoverpa armigera (Hübner), a key pest of different crops and vegetables. The development of both H. armigera and H. hebetor were simultaneously evaluated against a wide range of constant temperatures (10, 15, 17.5, 20, 25, 27.5, 30, 35, 37.5 and 40 °C). Helicoverpa armigera completed its development from egg to adult within a temperature range of 17.5–37.5 °C and H. hebetor completed its life cycle from egg to adult within a temperature range of 15–40 °C. Based on the Ikemoto and Takai model the developmental threshold (T o) and thermal constant (K) to complete the immature stages, of H. armigera were calculated as 11.6 °C and 513.6 DD, respectively, and 13 °C and 148 DD, respectively, for H. hebetor. Analytis/Briere-2 and Analytis/Briere-1 were adjudged the best non-linear models for prediction of phenology of H. armigera and H. hebetor, respectively and enabled estimation of the optimum (T opt) and maximum temperature (T max) for development with values of 34.8, 38.7, 36.3, and 43 °C for host and the parasitoid, respectively. Parasitisation by H. hebetor was maximal at 25 °C but occurred even at 40 °C. This study suggests although high temperature is limiting to insects, our estimates of the upper thermal limits for both species are higher than previously estimated. Some biological control of H. armigera by H. hebetor may persist in tropical areas, even with increasing temperatures due to climate change
    corecore