567 research outputs found

    The turbomachine blading design using S2-S1 approach

    Get PDF
    The boundary conditions corresponding to the design problem when the blades being simulated by the bound vorticity distribution are presented. The 3D flow is analyzed by the two steps S2 - S1 approach. In the first step, the number of blades is supposed to be infinite, the vortex distribution is transformed into an axisymmetric one, so that the flow field can be analyzed in a meridional plane. The thickness distribution of the blade producing the flow channel striction is taken into account by the modification of metric tensor in the continuity equation. Using the meridional stream function to define the flow field, the mass conservation is satisfied automatically. The governing equation is deduced from the relation between the azimuthal component of the vorticity and the meridional velocity. The value of the azimuthal component of the vorticity is provided by the hub to shroud equilibrium condition. This step leads to the determination of the axisymmetric stream sheets as well as the approximate camber surface of the blade. In the second step, the finite number of blades is taken into account, the inverse problem corresponding to the blade to blade flow confined in each stream sheet is analyzed. The momentum equation implies that the free vortex of the absolute velocity must be tangential to the stream sheet. The governing equation for the blade to blade flow stream function is deduced from this condition. At the beginning, the upper and the lower surfaces of the blades are created from the camber surface obtained from the first step with the assigned thickness distribution. The bound vorticity distribution and the penetrating flux conservation applied on the presumed blade surface constitute the boundary conditions of the inverse problem. The detection of this flux leads to the rectification of the geometry of the blades

    Expression of The αβ T-Cell Receptor Is Necessary for The Generation of The Thymic Medulla

    Get PDF
    The architecture of the thymus of mice that congenitally fail to express the αβ T-cell receptor (TCRαβ) has been examined by immunohistology. In these mice, a defined mutation was introduced into the TCRc gene by homologous recombination. By using antibodies specific for cortical or medullary epithelium and for major histocompatibility complex antigens, the network of cortical epithelium in these mice was shown to be essentially unaltered in comparison with that of normal mice. In contrast, the thymic medulla was considerably reduced in size. This analysis shows that expression of the αβ TCR but not the γδ TCR is obligatory for establishing the thymic medulla and suggests that the growth of medullary epithelial cells may require contact with TCRαβ-expressing cells

    Language in tuberculosis services: can we change to patient-centred terminology and stop the paradigm of blaming the patients?

    Get PDF
    The words 'defaulter', 'suspect' and 'control' have been part of the language of tuberculosis (TB) services for many decades, and they continue to be used in international guidelines and in published literature. From a patient perspective, it is our opinion that these terms are at best inappropriate, coercive and disempowering, and at worst they could be perceived as judgmental and criminalising, tending to place the blame of the disease or responsibility for adverse treatment outcomes on one side-that of the patients. In this article, which brings together a wide range of authors and institutions from Africa, Asia, Latin America, Europe and the Pacific, we discuss the use of the words 'defaulter', 'suspect' and 'control' and argue why it is detrimental to continue using them in the context of TB. We propose that 'defaulter' be replaced with 'person lost to follow-up'; that 'TB suspect' be replaced by 'person with presumptive TB' or 'person to be evaluated for TB'; and that the term 'control' be replaced with 'prevention and care' or simply deleted. These terms are non-judgmental and patient-centred. We appeal to the global Stop TB Partnership to lead discussions on this issue and to make concrete steps towards changing the current paradigm

    Australian utility weights for the EORTC QLU-C10D, a multi-attribute utility instrument derived from the cancer-specific quality of life questionnaire, EORTC QLQ-C30

    Get PDF
    Background: The EORTC QLU-C10D is a new multi-attribute utility instrument derived from the widely-used cancer-specific quality of life questionnaire, EORTC QLQ-C30. The QLU-C10D contains ten dimensions (Physical, Role, Social and Emotional Functioning; Pain, Fatigue, Sleep, Appetite, Nausea, Bowel Problems), each with 4 levels. To be used in cost-utility analysis, country-specific valuation sets are required. Objective: To provide Australian utility weights for the QLU-C10D. Methods: An Australian online panel was quota sampled to ensure population representativeness by sex and age (≥18y). Participants completed a discrete choice experiment (DCE) consisting of 16 choice-pairs. Each pair comprised two QLU-C10D health states plus life expectancy. Data were analysed using conditional logistic regression, parameterised to fit the quality-adjusted life-year framework. Utility weights were calculated as the ratio of each QOL dimension-level coefficient to the coefficient on life expectancy. Results: 1979 panel members opted-in, 1904 (96%) completed at least one choice-pair, and 1846 (93%) completed all 16 choice-pairs. Dimension weights were generally monotonic: poorer levels within each dimension were generally associated with greater utility decrements. The dimensions that impacted most on choice were, in order, Physical Functioning, Pain, Role Functioning and Emotional Functioning. Oncology-relevant dimensions with moderate impact were Nausea and Bowel Problems. Fatigue, Trouble Sleeping and Appetite had relatively small impact. The value of the worst health state was -0.096, somewhat worse than death. Conclusions: This study provides the first country-specific value set for the QLU-C10D, which can facilitate cost-utility analyses when applied to data collected with the EORTC QLQ-C30, prospectively and retrospectively

    An outbreak of Q fever associated with parturientcat exposure at an animal refuge and veterinaryclinic in southeast Queensland

    Get PDF
    Objective: To determine the source of a Q fever outbreak in humans at an animal refuge and veterinary clinic in southeast Queensland from October to December 2016

    Evaluation of the Victorian Healthy Homes Program: protocol for a randomised controlled trial.

    Full text link
    INTRODUCTION: The evaluation of the Victorian Healthy Homes Program (VHHP) will generate evidence about the efficacy and cost-effectiveness of home upgrades to improve thermal comfort, reduce energy use and produce health and economic benefits to vulnerable households in Victoria, Australia. METHODS AND ANALYSIS: The VHHP evaluation will use a staggered, parallel group clustered randomised controlled trial to test the home energy intervention in 1000 households. All households will receive the intervention either before (intervention group) or after (control group) winter (defined as 22 June to 21 September). The trial spans three winters with differing numbers of households in each cohort. The primary outcome is the mean difference in indoor average daily temperature between intervention and control households during the winter period. Secondary outcomes include household energy consumption and residential energy efficiency, self-reported respiratory symptoms, health-related quality of life, healthcare utilisation, absences from school/work and self-reported conditions within the home. Linear and logistic regression will be used to analyse the primary and secondary outcomes, controlling for clustering of households by area and the possible confounders of year and timing of intervention, to compare the treatment and control groups over the winter period. Economic evaluation will include a cost-effectiveness and cost-benefit analysis. ETHICS AND DISSEMINATION: Ethical approval was received from Victorian Department of Human Services Human Research Ethics Committee (reference number: 04/17), University of Technology Sydney Human Research Ethics Committee (reference number: ETH18-2273) and Australian Government Department of Veterans Affairs. Study results will be disseminated in a final report and peer-reviewed journals. TRIAL REGISTRATION NUMBER: ACTRN12618000160235
    corecore