196 research outputs found

    Using numerical plant models and phenotypic correlation space to design achievable ideotypes

    Full text link
    Numerical plant models can predict the outcome of plant traits modifications resulting from genetic variations, on plant performance, by simulating physiological processes and their interaction with the environment. Optimization methods complement those models to design ideotypes, i.e. ideal values of a set of plant traits resulting in optimal adaptation for given combinations of environment and management, mainly through the maximization of a performance criteria (e.g. yield, light interception). As use of simulation models gains momentum in plant breeding, numerical experiments must be carefully engineered to provide accurate and attainable results, rooting them in biological reality. Here, we propose a multi-objective optimization formulation that includes a metric of performance, returned by the numerical model, and a metric of feasibility, accounting for correlations between traits based on field observations. We applied this approach to two contrasting models: a process-based crop model of sunflower and a functional-structural plant model of apple trees. In both cases, the method successfully characterized key plant traits and identified a continuum of optimal solutions, ranging from the most feasible to the most efficient. The present study thus provides successful proof of concept for this enhanced modeling approach, which identified paths for desirable trait modification, including direction and intensity.Comment: 25 pages, 5 figures, 2017, Plant, Cell and Environmen

    Increased genetic diversity improves crop yield stability under climate variability: a computational study on sunflower

    Full text link
    A crop can be represented as a biotechnical system in which components are either chosen (cultivar, management) or given (soil, climate) and whose combination generates highly variable stress patterns and yield responses. Here, we used modeling and simulation to predict the crop phenotypic plasticity resulting from the interaction of plant traits (G), climatic variability (E) and management actions (M). We designed two in silico experiments that compared existing and virtual sunflower cultivars (Helianthus annuus L.) in a target population of cropping environments by simulating a range of indicators of crop performance. Optimization methods were then used to search for GEM combinations that matched desired crop specifications. Computational experiments showed that the fit of particular cultivars in specific environments is gradually increasing with the knowledge of pedo-climatic conditions. At the regional scale, tuning the choice of cultivar impacted crop performance the same magnitude as the effect of yearly genetic progress made by breeding. When considering virtual genetic material, designed by recombining plant traits, cultivar choice had a greater positive impact on crop performance and stability. Results suggested that breeding for key traits conferring plant plasticity improved cultivar global adaptation capacity whereas increasing genetic diversity allowed to choose cultivars with distinctive traits that were more adapted to specific conditions. Consequently, breeding genetic material that is both plastic and diverse may improve yield stability of agricultural systems exposed to climatic variability. We argue that process-based modeling could help enhancing spatial management of cultivated genetic diversity and could be integrated in functional breeding approaches

    Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modeling and genome-wide association

    Full text link
    Understanding the genetic basis of phenotypic plasticity is crucial for predicting and managing climate change effects on wild plants and crops. Here, we combined crop modeling and quantitative genetics to study the genetic control of oil yield plasticity for multiple abiotic stresses in sunflower. First we developed stress indicators to characterize 14 environments for three abiotic stresses (cold, drought and nitrogen) using the SUNFLO crop model and phenotypic variations of three commercial varieties. The computed plant stress indicators better explain yield variation than descriptors at the climatic or crop levels. In those environments, we observed oil yield of 317 sunflower hybrids and regressed it with three selected stress indicators. The slopes of cold stress norm reaction were used as plasticity phenotypes in the following genome-wide association study. Among the 65,534 tested SNP, we identified nine QTL controlling oil yield plasticity to cold stress. Associated SNP are localized in genes previously shown to be involved in cold stress responses: oligopeptide transporters, LTP, cystatin, alternative oxidase, or root development. This novel approach opens new perspectives to identify genomic regions involved in genotype-by-environment interaction of a complex traits to multiple stresses in realistic natural or agronomical conditions.Comment: 12 pages, 5 figures, Plant, Cell and Environmen

    Genetic control of protein, oil and fatty acids content under partial drought stress and late sowing conditions in sunflower (Helianthus annuus)

    Get PDF
    The purpose of the present study was to map quantitative trait locus (QTLs) associated with percentage of seed protein, oil and fatty acids content under different conditions in a population of recombinant inbred lines (RILs) of sunflower. Three independent field experiments were conducted with well-, partial-irrigated and late-sowing conditions in randomized complete block design with three replications. High significant variation among genotypes is observed for the studied traits in all conditions. Several specific and non-specific QTLs for the aforementioned traits were detected. Under late-sowing condition, a specific QTL of palmitic acid content on linkage group 6 (PAC-LS.6) is located between ORS1233 and SSL66_1 markers. Common chromosomic regions are observed for percentage of seed oil and stearic acid content on linkage group 10 (PSO-PI.10 and SAC-WI.10) and 15 (PSO-PI.15 and SAC-LS.15). Overlapping occurs for QTLs of oleic and linoleic acids content on linkage groups 10, 11 and 16. Seven QTLs associated with palmitic, stearic, oleic and linoleic acids content are identified on linkage group 14. These common QTLs are linked to HPPD homologue, HuCL04260C001. Coincidence of the position for some detected QTLs and candidate genes involved in enzymatic and non-enzymatic antioxidants would be useful for the function of the respective genes in fatty acid stability.Key words: Sunflower, quantitative trait locus, simple sequence repeats, oil content, protein content, fatty acids

    A Gene-Phenotype Network Based on Genetic Variability for Drought Responses Reveals Key Physiological Processes in Controlled and Natural Environments

    Get PDF
    Identifying the connections between molecular and physiological processes underlying the diversity of drought stress responses in plants is key for basic and applied science. Drought stress response involves a large number of molecular pathways and subsequent physiological processes. Therefore, it constitutes an archetypical systems biology model. We first inferred a gene-phenotype network exploiting differences in drought responses of eight sunflower (Helianthus annuus) genotypes to two drought stress scenarios. Large transcriptomic data were obtained with the sunflower Affymetrix microarray, comprising 32423 probesets, and were associated to nine morpho-physiological traits (integrated transpired water, leaf transpiration rate, osmotic potential, relative water content, leaf mass per area, carbon isotope discrimination, plant height, number of leaves and collar diameter) using sPLS regression. Overall, we could associate the expression patterns of 1263 probesets to six phenotypic traits and identify if correlations were due to treatment, genotype and/or their interaction. We also identified genes whose expression is affected at moderate and/or intense drought stress together with genes whose expression variation could explain phenotypic and drought tolerance variability among our genetic material. We then used the network model to study phenotypic changes in less tractable agronomical conditions, i.e. sunflower hybrids subjected to different watering regimes in field trials. Mapping this new dataset in the gene-phenotype network allowed us to identify genes whose expression was robustly affected by water deprivation in both controlled and field conditions. The enrichment in genes correlated to relative water content and osmotic potential provides evidence of the importance of these traits in agronomical conditions

    Integrative MicroRNA and Proteomic Approaches Identify Novel Osteoarthritis Genes and Their Collaborative Metabolic and Inflammatory Networks

    Get PDF
    BACKGROUND: Osteoarthritis is a multifactorial disease characterized by destruction of the articular cartilage due to genetic, mechanical and environmental components affecting more than 100 million individuals all over the world. Despite the high prevalence of the disease, the absence of large-scale molecular studies limits our ability to understand the molecular pathobiology of osteoathritis and identify targets for drug development. METHODOLOGY/PRINCIPAL FINDINGS: In this study we integrated genetic, bioinformatic and proteomic approaches in order to identify new genes and their collaborative networks involved in osteoarthritis pathogenesis. MicroRNA profiling of patient-derived osteoarthritic cartilage in comparison to normal cartilage, revealed a 16 microRNA osteoarthritis gene signature. Using reverse-phase protein arrays in the same tissues we detected 76 differentially expressed proteins between osteoarthritic and normal chondrocytes. Proteins such as SOX11, FGF23, KLF6, WWOX and GDF15 not implicated previously in the genesis of osteoarthritis were identified. Integration of microRNA and proteomic data with microRNA gene-target prediction algorithms, generated a potential "interactome" network consisting of 11 microRNAs and 58 proteins linked by 414 potential functional associations. Comparison of the molecular and clinical data, revealed specific microRNAs (miR-22, miR-103) and proteins (PPARA, BMP7, IL1B) to be highly correlated with Body Mass Index (BMI). Experimental validation revealed that miR-22 regulated PPARA and BMP7 expression and its inhibition blocked inflammatory and catabolic changes in osteoarthritic chondrocytes. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that obesity and inflammation are related to osteoarthritis, a metabolic disease affected by microRNA deregulation. Gene network approaches provide new insights for elucidating the complexity of diseases such as osteoarthritis. The integration of microRNA, proteomic and clinical data provides a detailed picture of how a network state is correlated with disease and furthermore leads to the development of new treatments. This strategy will help to improve the understanding of the pathogenesis of multifactorial diseases such as osteoarthritis and provide possible novel therapeutic targets

    Integrative MicroRNA and Proteomic Approaches Identify Novel Osteoarthritis Genes and Their Collaborative Metabolic and Inflammatory Networks

    Get PDF
    BACKGROUND: Osteoarthritis is a multifactorial disease characterized by destruction of the articular cartilage due to genetic, mechanical and environmental components affecting more than 100 million individuals all over the world. Despite the high prevalence of the disease, the absence of large-scale molecular studies limits our ability to understand the molecular pathobiology of osteoathritis and identify targets for drug development. METHODOLOGY/PRINCIPAL FINDINGS: In this study we integrated genetic, bioinformatic and proteomic approaches in order to identify new genes and their collaborative networks involved in osteoarthritis pathogenesis. MicroRNA profiling of patient-derived osteoarthritic cartilage in comparison to normal cartilage, revealed a 16 microRNA osteoarthritis gene signature. Using reverse-phase protein arrays in the same tissues we detected 76 differentially expressed proteins between osteoarthritic and normal chondrocytes. Proteins such as SOX11, FGF23, KLF6, WWOX and GDF15 not implicated previously in the genesis of osteoarthritis were identified. Integration of microRNA and proteomic data with microRNA gene-target prediction algorithms, generated a potential "interactome" network consisting of 11 microRNAs and 58 proteins linked by 414 potential functional associations. Comparison of the molecular and clinical data, revealed specific microRNAs (miR-22, miR-103) and proteins (PPARA, BMP7, IL1B) to be highly correlated with Body Mass Index (BMI). Experimental validation revealed that miR-22 regulated PPARA and BMP7 expression and its inhibition blocked inflammatory and catabolic changes in osteoarthritic chondrocytes. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that obesity and inflammation are related to osteoarthritis, a metabolic disease affected by microRNA deregulation. Gene network approaches provide new insights for elucidating the complexity of diseases such as osteoarthritis. The integration of microRNA, proteomic and clinical data provides a detailed picture of how a network state is correlated with disease and furthermore leads to the development of new treatments. This strategy will help to improve the understanding of the pathogenesis of multifactorial diseases such as osteoarthritis and provide possible novel therapeutic targets
    • …
    corecore