8,145 research outputs found
A conformal field theory description of the paired and parafermionic states in the quantum Hall effect
We extend the construction of the effective conformal field theory for the
Jain hierarchical fillings proposed in cond-mat/9912287 to the description of a
quantum Hall fluid at non standard fillings nu=m/(pm+2). The chiral primary
fields are found by using a procedure which induces twisted boundary conditions
on the m scalar fields; they appear as composite operators of a charged and
neutral component. The neutral modes describe parafermions and contribute to
the ground state wave function with a generalized Pfaffian term. Correlators of
Ne electrons in the presence of quasi-hole excitations are explicitly given for
m=2.Comment: 11 pages, plain Late
Dielectric constant boost in amorphous sesquioxides
High-kappa dielectrics for insulating layers are a current key ingredient of
microelectronics. X2O3 sesquioxide compounds are among the candidates. Here we
show for a typical material of this class, ScO3, that the relatively modest
dielectric constant of its crystalline phase is enhanced in the amorphous phase
by over 40% (from ~15 to ~22). This is due to the disorder-induced activation
of low frequency cation-related modes which are inactive or inefficient in the
crystal, and by the conservation of effective dynamical charges (a measure of
atomic polarizability). The analysis employs density-functional energy-force
and perturbation-theory calculations of the dielectric response of amorphous
samples generated by pair-potential molecular dynamics.Comment: 3 pages, 3 figures, submitted to AP
Asymptotics of surface-plasmon redshift saturation at sub-nanometric separations
Many promising nanophotonics endeavours hinge upon the unique plasmonic
properties of nanometallic structures with narrow non-metallic gaps, which
support super-concentrated bonding modes that singularly redshift with
decreasing separations. In this letter, we present a descriptive physical
picture, complemented by elementary asymptotic formulae, of a nonlocal
mechanism for plasmon-redshift saturation at subnanometric gap widths. Thus, by
considering the electron-charge and field distributions in the close vicinity
of the metal-vacuum interface, we show that nonlocality is asymptotically
manifested as an effective potential discontinuity. For bonding modes in the
near-contact limit, the latter discontinuity is shown to be effectively
equivalent to a widening of the gap. As a consequence, the resonance-frequency
near-contact asymptotics are a renormalisation of the corresponding local ones.
Specifically, the renormalisation furnishes an asymptotic plasmon-frequency
lower bound that scales with the -power of the Fermi wavelength. We
demonstrate these remarkable features in the prototypical cases of nanowire and
nanosphere dimers, showing agreement between our elementary expressions and
previously reported numerical computations
Surface-plasmon resonances of arbitrarily shaped nanometallic structures in the small-screening-length limit
According to the hydrodynamic Drude model, surface-plasmon resonances of
metallic nanostructures blueshift owing to the nonlocal response of the metal's
electron gas. The screening length characterising the nonlocal effect is often
small relative to the overall dimensions of the metallic structure, which
enables us to derive a coarse-grained nonlocal description using matched
asymptotic expansions; a perturbation theory for the blueshifts of arbitrary
shaped nanometallic structures is then developed. The effect of nonlocality is
not always a perturbation and we present a detailed analysis of the "bonding"
modes of a dimer of nearly touching nanowires where the leading-order
eigenfrequencies and eigenmode distributions are shown to be a renormalisation
of those predicted assuming a local metal permittivity
La conversaciĂłn interrumpida
Este texto se ha incluido en el libro "A este lado del faro" (trad. del italiano por M.A. Cuevas, Parténope, Alicante, 2008)
Factorization in exclusive semileptonic radiative B decays
We derive a new factorization relation for the semileptonic radiative decay B
-> \pi \ell \nu \gamma in the kinematical region of a slow pion p_\pi ~ \Lambda
and an energetic photon E_\gamma >> \Lambda, working at leading order in
\Lambda/m_b. In the limit of a soft pion, the nonperturbative matrix element
appearing in this relation can be computed using chiral perturbation theory. We
present a phenomenological study of this decay, which may be important for a
precise determination of the exclusive nonradiative decay.Comment: 10 pages, 3 figures; minor corrections, one reference adde
Tunnelling Effects in a Brane System and Quantum Hall Physics
We argue that a system of interacting D-branes, generalizing a recent
proposal, can be modelled as a Quantum Hall fluid. We show that tachyon
condensation in such a system is equivalent to one particle tunnelling. In a
conformal field theory effective description, that induces a transition from a
theory with central charge c=2 to a theory with c=3/2, with a corresponding
symmetry enhancement.Comment: 12 pages, no figures, Latex, some aspects clarified, sect.3 expanded,
references adde
Mean-field phase diagram of the 1-D Bose gas in a disorder potential
We study the quantum phase transition of the 1D weakly interacting Bose gas
in the presence of disorder. We characterize the phase transition as a function
of disorder and interaction strengths, by inspecting the long-range behavior of
the one-body density matrix as well as the drop in the superfluid fraction. We
focus on the properties of the low-energy Bogoliubov excitations that drive the
phase transition, and find that the transition to the insulator state is marked
by a diverging density of states and a localization length that diverges as a
power-law with power 1. We draw the phase diagram and we observe that the
boundary between the superfluid and the Bose glass phase is characterized by
two different algebraic relations. These can be explained analytically by
considering the limiting cases of zero and infinite disorder correlation
length.Comment: 10 pages, 10 figure
- …