71 research outputs found

    Electronic transport, ionic activation energy and trapping phenomena in a polymer-hybrid halide perovskite composite

    Get PDF
    Abstract The exploitation of methylammonium lead iodide perovskite-polymer composites is a promising strategy for the preparation of photoactive thin layers for solar cells. The preparation of these composites is a simple fabrication method with improved moisture stability when compared to that of pristine perovskite films. To deepen the understanding of the charge transport properties of these films, we investigated charge carrier mobility, traps, and ion migration. For this purpose, we applied a combinatory measurement approach that proves how such composites can still retain an ambipolar charge transport nature and the same mobility values of the related perovskite. Furthermore, thermally stimulated current measurements revealed that the polymer influenced the creation of additional defects during film formation without affecting charge mobility. Finally, impedance spectroscopy measurements suggested the addition of starch may hinder ion migration, which would require larger activation energies to move ions in composite films. These results pave the way for new strategies of polymer-assisted perovskite film development

    X-ray excited visible luminescence spectroscopy of organic materials using a portable optical spectrometer

    Get PDF
    The use of a portable video telescope, mounted externally to a beamline endstation, to obtain synchrotron-radiation-excited visible luminescence, is described. Real-time video monitoring permits simple and quick alignment, and allows a visual record of the luminescence experiment. The telescope is fibre-optic-coupled to an optical spectrometer. Examples are given of X-ray excited optical spectroscopy from organic materials for light-emitting-diode applications

    High colouring efficiency, optical density and inserted charge in sol–gel derived electrochromic titania nanostructures

    Get PDF
    A pure TiO2 thin film (100–120 nm) was made from a green aqueous sol–gel precursor on FTO glass and calcined at 430 °C. It was a mix of amorphous, anatase, rutile and brookite TiO2 phases, and exhibited very good electrochromic properties over visible and NIR wavelengths with an applied bias of +0.1 V to −1.5 V. It was highly transparent showing excellent coloration with applied voltage, with transmittance modulation (ΔT) = 69.7% at 550 nm, 86% at 700 nm and an overall ΔT between 400–1650 nm of 60%, giving a very large change in optical density (ΔOD) of 1.4 at 550 nm and 2.4 at 700 nm. Cyclic voltammograms had typical peaks for TiO2 at −1.3 V for colouration and −0.9 V for bleaching, with a high separation of 0.37 V between peaks, and a charge density after charging for 25 min of Qc = 50 mC cm−2. After only 60 s and 120 s at −1.5 V, inserted charge values of 17.6 and 22 mC cm−2 were observed, leading to a high colouration efficiency (CE) of 55.9 cm2 C−1 at 550 nm. These ΔOD, ΔT, Qc and CE values are superior to any previously reported for crystalline sol–gel TiO2 films. They also possessed rapid switching times for bleaching and colouring of τb90% = 10 s and τc90% = 55 s, comparable to the best previously reported sol–gel anatase-based TiO2 films. This makes this nanomaterial an excellent candidate for smart windows and other electrochromic devices and applications

    Immunological backbone of uveal melanoma: is there a rationale for immunotherapy?

    Get PDF
    No standard treatment has been established for metastatic uveal melanoma (mUM). Immunotherapy is commonly used for this disease even though UM has not been included in phase III clinical trials with checkpoint inhibitors. Unfortunately, only a minority of patients obtain a clinical benefit with immunotherapy. The immunological features of mUM were reviewed in order to understand if immunotherapy could still play a role for this disease

    Primary Breast Extranodal Marginal Zone Lymphoma in Primary Sjögren Syndrome: Case Presentation and Relevant Literature

    Get PDF
    The association between autoimmune diseases, mostly rheumatoid arthritis, systemic lupus erythematosus, celiac disease and Sjögren syndrome, and lymphoma, has been widely demonstrated by several epidemiologic studies. By a mechanism which has not yet been entirely elucidated, chronic activation/stimulation of the immune system, along with the administration of specific treatments, may lead to the onset of different types of lymphoma in such patients. Specifically, patients affected by Sjögren syndrome may develop lymphomas many years after the original diagnosis. Several epidemiologic, hematologic, and histological features may anticipate the progression from Sjögren syndrome into lymphoma but, to the best of our knowledge, a definite pathogenetic mechanism for such progression is still missing. In fact, while the association between Sjögren syndrome and non-Hodgkin lymphoma, mostly extranodal marginal zone lymphomas and, less often, diffuse large B-cell, is well established, many other variables, such as time of onset, gender predilection, sites of occurrence, subtype of lymphoma, and predictive factors, still remain unclear. We report on a rare case of primary breast lymphoma occurring three years after the diagnosis of Sjögren syndrome in a 57-year-old patient. The diagnostic work-up, including radiograms, core needle biopsy, and histological examination, is discussed, along with emerging data from the recent literature, thus highlighting the usefulness of breast surveillance in Sjögren syndrome patient

    Nature of the spin-glass phase at experimental length scales

    Full text link
    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L=32 lattices down to T=0.64 Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L=110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.Comment: 48 pages, 19 postscript figures, 9 tables. Version accepted for publication in the Journal of Statistical Mechanic

    Effect of surface tension and drying time on inkjet-printed PEDOT:PSS for ITO-free OLED devices

    Get PDF
    Abstract Highly conductive PEDOT:PSS is one of the most promising materials for indium tin oxide (ITO) substitution in printed electronics. Here, we report the development and optimisation of two PEDOT:PSS ink formulations for the fabrication of inkjet-printed transparent conductive layers. Starting from aqueous commercial solutions, co-solvents and a non-ionic surfactant were employed to modify the surface tension, improve the wetting capability of the ink, and obtain uniform and homogeneous thin films. In particular, the quantities of ethanol and surfactant were systematically adjusted to determine the optimal conditions for inkjet printing. The results demonstrate that a surface tension value between 28 and 40 mN/m and approximately 40 vol.% of a low-boiling-point co-solvent are fundamental to ensure the proper wetting of the glass substrate and a quick-drying process that confers uniformity to the printed thin film. The printed PEDOT:PSS thin films show good morphological, optical, and electrical properties that are similar to those observed for the corresponding spin-coated layers. The organic light-emitting diodes (OLEDs) fabricated with the inkjet-printed PEDOT:PSS electrodes showed a maximum quantum efficiency of 5.5% and maximum current efficiency of 15 cd/A, which is comparable to spin-coated reference devices. These results demonstrate the great potential of polymeric electrodes for the fabrication of high-efficiency printed OLED devices that are compatible with flexible and stretchable substrates
    • …
    corecore