103 research outputs found

    Ictal epileptic headache. an old story with courses and appeals

    Get PDF
    The term "ictal epileptic headache" has been recently proposed to classify the clinical picture in which headache is the isolated ictal symptom of a seizure. There is emerging evidence from both basic and clinical neurosciences that cortical spreading depression and an epileptic focus may facilitate each other, although with a different degree of efficiency. This review address the long history which lead to the 'migralepsy' concept to the new emerging pathophysiological aspects, and clinical and electroencephalography evidences of ictal epileptic headache. Here, we review and discuss the common physiopathology mechanisms and the historical aspects underlying the link between headache and epilepsy. Either experimental or clinical measures are required to better understand this latter relationship: the development of animal models, molecular studies defining more precise genotype/phenotype correlations as well as multicenter clinical studies with revision of clinical criteria for headache-/epilepsy-related disorders represent the start of future research. Therefore, the definition of ictal epileptic headache should be used to classify the rare events in which headache is the only manifestation of a seizure. Finally, using our recently published criteria, we will be able to clarify if ictal epileptic headache represents an underestimated phenomenon or not

    A Parallel Implementation of the Network Identification by Multiple Regression (NIR) Algorithm to Reverse-Engineer Regulatory Gene Networks

    Get PDF
    The reverse engineering of gene regulatory networks using gene expression profile data has become crucial to gain novel biological knowledge. Large amounts of data that need to be analyzed are currently being produced due to advances in microarray technologies. Using current reverse engineering algorithms to analyze large data sets can be very computational-intensive. These emerging computational requirements can be met using parallel computing techniques. It has been shown that the Network Identification by multiple Regression (NIR) algorithm performs better than the other ready-to-use reverse engineering software. However it cannot be used with large networks with thousands of nodes - as is the case in biological networks - due to the high time and space complexity. In this work we overcome this limitation by designing and developing a parallel version of the NIR algorithm. The new implementation of the algorithm reaches a very good accuracy even for large gene networks, improving our understanding of the gene regulatory networks that is crucial for a wide range of biomedical applications

    How to infer gene networks from expression profiles

    Get PDF
    Inferring, or ‘reverse-engineering', gene networks can be defined as the process of identifying gene interactions from experimental data through computational analysis. Gene expression data from microarrays are typically used for this purpose. Here we compared different reverse-engineering algorithms for which ready-to-use software was available and that had been tested on experimental data sets. We show that reverse-engineering algorithms are indeed able to correctly infer regulatory interactions among genes, at least when one performs perturbation experiments complying with the algorithm requirements. These algorithms are superior to classic clustering algorithms for the purpose of finding regulatory interactions among genes, and, although further improvements are needed, have reached a discreet performance for being practically useful

    Understanding the limits of animal models as predictors of human biology: lessons learned from the sbv IMPROVER Species Translation Challenge

    Get PDF
    Motivation: Inferring how humans respond to external cues such as drugs, chemicals, viruses or hormones is an essential question in biomedicine. Very often, however, this question cannot be addressed because it is not possible to perform experiments in humans. A reasonable alternative consists of generating responses in animal models and ‘translating' those results to humans. The limitations of such translation, however, are far from clear, and systematic assessments of its actual potential are urgently needed. sbv IMPROVER (systems biology verification for Industrial Methodology for PROcess VErification in Research) was designed as a series of challenges to address translatability between humans and rodents. This collaborative crowd-sourcing initiative invited scientists from around the world to apply their own computational methodologies on a multilayer systems biology dataset composed of phosphoproteomics, transcriptomics and cytokine data derived from normal human and rat bronchial epithelial cells exposed in parallel to 52 different stimuli under identical conditions. Our aim was to understand the limits of species-to-species translatability at different levels of biological organization: signaling, transcriptional and release of secreted factors (such as cytokines). Participating teams submitted 49 different solutions across the sub-challenges, two-thirds of which were statistically significantly better than random. Additionally, similar computational methods were found to range widely in their performance within the same challenge, and no single method emerged as a clear winner across all sub-challenges. Finally, computational methods were able to effectively translate some specific stimuli and biological processes in the lung epithelial system, such as DNA synthesis, cytoskeleton and extracellular matrix, translation, immune/inflammation and growth factor/proliferation pathways, better than the expected response similarity between species. Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    A crowd-sourcing approach for the construction of species-specific cell signaling networks

    Get PDF
    Motivation: Animal models are important tools in drug discovery and for understanding human biology in general. However, many drugs that initially show promising results in rodents fail in later stages of clinical trials. Understanding the commonalities and differences between human and rat cell signaling networks can lead to better experimental designs, improved allocation of resources and ultimately better drugs. Results: The sbv IMPROVER Species-Specific Network Inference challenge was designed to use the power of the crowds to build two species-specific cell signaling networks given phosphoproteomics, transcriptomics and cytokine data generated from NHBE and NRBE cells exposed to various stimuli. A common literature-inspired reference network with 220 nodes and 501 edges was also provided as prior knowledge from which challenge participants could add or remove edges but not nodes. Such a large network inference challenge not based on synthetic simulations but on real data presented unique difficulties in scoring and interpreting the results. Because any prior knowledge about the networks was already provided to the participants for reference, novel ways for scoring and aggregating the results were developed. Two human and rat consensus networks were obtained by combining all the inferred networks. Further analysis showed that major signaling pathways were conserved between the two species with only isolated components diverging, as in the case of ribosomal S6 kinase RPS6KA1. Overall, the consensus between inferred edges was relatively high with the exception of the downstream targets of transcription factors, which seemed more difficult to predict. Contact: [email protected] or [email protected]. Supplementary information: Supplementary data are available at Bioinformatics onlin

    Migralepsy, hemicrania epileptica, post-ictal headache and “ictal epileptic headache”: a proposal for terminology and classification revision

    Get PDF
    Despite the fact that migraine and epilepsy are among the commoner brain diseases and that comorbidity of these conditions is well known, only few reports of migralepsy and hemicrania epileptica (HE) have been published according to the current ICHD-II criteria. Particularly, ICHD-II describes “migraine-triggered seizure” (i.e., migralepsy) among complications of migraine at “1.5.5” (as a rare event in which a seizure happens during migrainous aura), while hemicrania epileptica (coded at “7.6.1”) and post-ictal headache (coded at “7.6.2”) are described among headaches attributed to epileptic seizure. However, to date neither the International Headache Society nor the International League against Epilepsy mention that headache/migraine may be the sole ictal epileptic manifestation. Based on the current knowledge, migralepsy is highly unlikely to exist as such. We, therefore, propose to delete this term until clear evidence its existence is provided. Moreover, we herein propose a revision of terminology and classification criteria to properly represent the migraine/headache relationships. We suggest the term “ictal epileptic headache” in cases in which headache/migraine is the sole ictal epileptic manifestation

    Colocalization of coregulated genes: a steered molecular dynamics study of human chromosome 19

    Get PDF
    The connection between chromatin nuclear organization and gene activity is vividly illustrated by the observation that transcriptional coregulation of certain genes appears to be directly influenced by their spatial proximity. This fact poses the more general question of whether it is at all feasible that the numerous genes that are coregulated on a given chromosome, especially those at large genomic distances, might become proximate inside the nucleus. This problem is studied here using steered molecular dynamics simulations in order to enforce the colocalization of thousands of knowledge-based gene sequences on a model for the gene-rich human chromosome 19. Remarkably, it is found that most, ~80% gene pairs can be brought simultaneously into contact. This is made possible by the low degree of intra-chromosome entanglement and the large number of cliques in the gene coregulatory network. A clique is a set of genes coregulated all together as a group. The constrained conformations for the model chromosome 19 are further shown to be organised in spatial macrodomains that are similar to those inferred from recent HiC measurements. The findings indicate that gene coregulation and colocalization are largely compatible and that this relationship can be exploited to draft the overall spatial organization of the chromosome in vivo. The more general validity and implications of these findings could be investigated by applying to other eukaryotic chromosomes the general and transferable computational strategy introduced here
    corecore