14,750 research outputs found

    Evaporative cooling in a radio-frequency trap

    Get PDF
    A theoretical investigation for implementing a scheme of forced evaporative cooling in radio-frequency (rf) adiabatic potentials is presented. Supposing the atoms to be trapped by a rf field RF1, the cooling procedure is facilitated using a second rf source RF2. This second rf field produces a controlled coupling between the spin states dressed by RF1. The evaporation is then possible in a pulsed or continuous mode. In the pulsed case, atoms with a given energy are transferred into untrapped dressed states by abruptly switching off the interaction. In the continuous case, it is possible for energetic atoms to adiabatically follow the doubly-dressed states and escape out of the trap. Our results also show that when the frequencies of the fields RF1 and RF2 are separated by at least the Rabi frequency associated with RF1, additional evaporation zones appear which can make this process more efficient.Comment: 12 pages, 11 figure

    Individual Control of Risk: Seat Belt Use, Subjective Norms and the Theory of Reasoned Action

    Get PDF
    When faced with a risk for which an inexpensive solution is available, individuals often choose the risk rather than the solution. Protection from certain kinds of risks, e.g., using seat belts or condoms or insulating against radon, is largely under personal control, but individuals often choose not to comply with behaviors which would reduce the risk. The Theory of Reasoned Action (TRA) has been used to predict when individuals will comply. The authors attempted to validate aspects of the TRA by the use of scenarios. Factor analysis of their data supports the theory that intention is a major determinate of behavior but fails to establish the influence of scenarios on subjects\u27 intention to wear seat belts

    Symmetry group analysis of an ideal plastic flow

    Full text link
    In this paper, we study the Lie point symmetry group of a system describing an ideal plastic plane flow in two dimensions in order to find analytical solutions. The infinitesimal generators that span the Lie algebra for this system are obtained. We completely classify the subalgebras of up to codimension two in conjugacy classes under the action of the symmetry group. Based on invariant forms, we use Ansatzes to compute symmetry reductions in such a way that the obtained solutions cover simultaneously many invariant and partially invariant solutions. We calculate solutions of the algebraic, trigonometric, inverse trigonometric and elliptic type. Some solutions depending on one or two arbitrary functions of one variable have also been found. In some cases, the shape of a potentially feasible extrusion die corresponding to the solution is deduced. These tools could be used to thin, curve, undulate or shape a ring in an ideal plastic material

    The development of a position-sensitive CZT detector with orthogonal co-planar anode strips

    Get PDF
    We report on the simulation, construction, and performance of prototype CdZnTe imaging detectors with orthogonal coplanar anode strips. These detectors employ a novel electrode geometry with non-collecting anode strips in one dimension and collecting anode pixels, interconnected in rows, in the orthogonal direction. These detectors retain the spectroscopic and detection efficiency advantages of single carrier (electron) sensing devices as well as the principal advantage of conventional strip detectors with orthogonal anode and cathode strips, i.e. an N×N array of imaging pixels are with only 2N electronic channels. Charge signals induced on the various electrodes of a prototype detector with 8×8 unit cells (1×1×5 mm3)are compared to the simulations. Results of position and energy resolution measurements are presented and discussed

    The relative influences of disorder and of frustration on the glassy dynamics in magnetic systems

    Full text link
    The magnetisation relaxations of three different types of geometrically frustrated magnetic systems have been studied with the same experimental procedures as previously used in spin glasses. The materials investigated are Y2_2Mo2_2O7_7 (pyrochlore system), SrCr8.6_{8.6}Ga3.4_{3.4}O19_{19} (piled pairs of Kagom\'e layers) and (H3_3O)Fe3_3(SO4_4)2_2(OH)6_6 (jarosite compound). Despite a very small amount of disorder, all the samples exhibit many characteristic features of spin glass dynamics below a freezing temperature TgT_g, much smaller than their Curie-Weiss temperature θ\theta. The ageing properties of their thermoremanent magnetization can be well accounted for by the same scaling law as in spin glasses, and the values of the scaling exponents are very close. The effects of temperature variations during ageing have been specifically investigated. In the pyrochlore and the bi-Kagom\'e compounds, a decrease of temperature after some waiting period at a certain temperature TpT_p re-initializes ageing and the evolution at the new temperature is the same as if the system were just quenched from above TgT_g. However, as the temperature is raised back to TpT_p, the sample recovers the state it had previously reached at that temperature. These features are known in spin glasses as rejuvenation and memory effects. They are clear signatures of the spin glass dynamics. In the Kagom\'e compound, there is also some rejuvenation and memory, but much larger temperature changes are needed to observe the effects. In that sense, the behaviour of this compound is quantitatively different from that of spin glasses.Comment: latex VersionCorrigee4.tex, 4 files, 3 figures, 5 pages (Proceedings of the International Conference on Highly Frustrated Magnetism (HFM2003), August 26-30, 2003, Institut Laue Langevin (ILL), Grenoble, France

    Regularity of the Einstein Equations at Future Null Infinity

    Full text link
    When Einstein's equations for an asymptotically flat, vacuum spacetime are reexpressed in terms of an appropriate conformal metric that is regular at (future) null infinity, they develop apparently singular terms in the associated conformal factor and thus appear to be ill-behaved at this (exterior) boundary. In this article however we show, through an enforcement of the Hamiltonian and momentum constraints to the needed order in a Taylor expansion, that these apparently singular terms are not only regular at the boundary but can in fact be explicitly evaluated there in terms of conformally regular geometric data. Though we employ a rather rigidly constrained and gauge fixed formulation of the field equations, we discuss the extent to which we expect our results to have a more 'universal' significance and, in particular, to be applicable, after minor modifications, to alternative formulations.Comment: 43 pages, no figures, AMS-TeX. Minor revisions, updated to agree with published versio

    Bosonic Colored Group Field Theory

    Full text link
    Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the "ultraspin" (large spin) limit. The results are generalized in any dimension. Finally integrating out two colors we write a new representation which could be useful for the constructive analysis of this type of models

    Ultrafast (but Many-Body) Relaxation in a Low-Density Electron Glass

    Full text link
    We present a study of the relaxation dynamics of the photoexcited conductivity of the impurity states in the low-density electronic glass, phosphorous-doped silicon Si:P. Using optical pump-terahertz probe spectroscopy we find strongly temperature and fluence dependent glassy power-law relaxation occurring over sub-ns time scales. Such behavior is in contrast to the much longer time scales found in higher electron density glassy systems. We also find evidence for both multi-particle relaxation mechanisms and/or coupling to electronic collective modes and a low temperature quantum relaxational regime.Comment: 4 pages, 4 figures, Appeared in Phys. Rev. Let

    Interacting classical dimers on the square lattice

    Full text link
    We study a model of close-packed dimers on the square lattice with a nearest neighbor interaction between parallel dimers. This model corresponds to the classical limit of quantum dimer models [D.S. Rokhsar and S.A. Kivelson, Phys. Rev. Lett.{\bf 61}, 2376 (1988)]. By means of Monte Carlo and Transfer Matrix calculations, we show that this system undergoes a Kosterlitz-Thouless transition separating a low temperature ordered phase where dimers are aligned in columns from a high temperature critical phase with continuously varying exponents. This is understood by constructing the corresponding Coulomb gas, whose coupling constant is computed numerically. We also discuss doped models and implications on the finite-temperature phase diagram of quantum dimer models.Comment: 4 pages, 4 figures; v2 : Added results on doped models; published versio
    • …
    corecore