32 research outputs found

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Isolation and biochemical characterization of bradykinin-potentiating peptides from Bitis gabonica rhinoceros

    No full text
    Abstract Background Venoms represent a still underexplored reservoir of bioactive components that might mitigate or cure diseases in conditions in which conventional therapy is ineffective. The bradykinin-potentiating peptides (BPPs) comprise a class of angiotensin-I converting enzyme (ACE) inhibitors. The BPPs usually consist of oligopeptides with 5 to 13 residues with a high number of proline residues and the tripeptide Ile-Pro-Pro (IPP-tripeptide) in the C-terminus region and have a conserved N-terminal pyroglutamate residue. As a whole, the action of the BPPs on prey and snakebite victims results in the decrease of the blood pressure. The aim of this work was to isolate and characterize novel BPPs from the venom of Bitis gabonica rhinoceros. Methods The crude venom of B. g. rhinoceros was fractionated by size exclusion chromatography and the peptide fraction (<7 kDa) was separated by reverse phase chromatography (RP-HPLC) and analyzed by ESI-IT-TOF-MS/MS. One new BPP was identified, synthetized and assayed for ACE inhibition and, in vivo, for edema potentiation. Results Typical BPP signatures were identified in three RP-HPLC fractions. CID fragmentation presented the usual y-ion of the terminal P-P fragment as a predominant signal at m/z 213.1. De novo peptide sequencing identified one Bothrops-like BPP and one new BPP sequence. The new BPP was synthesized and showed poor inhibition over ACE, but displayed significant bradykinin-induced edema potentiation. Conclusions So far, few BPPs are described in Viperinae, and based on the sequenced peptides, two non-canonical sequences were detected. The possible clinical role of this new peptides remains unclear

    Pseudechis guttatus venom proteome: Insights into evolution and toxin clustering

    No full text
    The Australian Elapidae spotted black snake Pseudechis guttatus venom proteome composition was analyzed by high throughput mass spectrometry. The crude venom proteins were decomplexed by 2D-PAGE and in-gel digestion peptides from 66 spot samples and analyzed by tandem mass spectrometry-LC-ESI-ion trap. Protein identification was performed combining PEAKS studio 7.0 and Mascot software. The analysis identified L-amino-acid oxidases, phospholipases A2, metalloproteases, nerve growth factors and ecto-5'-nucleotidases, and for the first time in this venom the components cysteine-rich secretory proteins similar to pseudechetoxin, phospholipase B and transferrin-like protein. The envenomation symptoms are in agreement with the identified components, but the present limitations of database information might impair the detection of toxin families, protein species and still unknown toxins. From the qualitative point of view, the similarity of this venom with the ones from other Pseudechis species could be assigned to recent speciation events.Biological significanceStudies on the proteome of Australian Elapidae (Ancanthophiinae) are quite rare. In the present work we performed, using classic proteomic methods, a qualitative and partial analysis of the proteic components of Pseudechis guttatus venom. Although previous studies contributed to the knowledge of the major components of this venom, our study revealed some yet undescribed protein species, as well as new toxins, such as CRiSPs, phospholipase B, transferrin-like protein and ecto 5'-nucleotidase. (C) 2014 Elsevier B.V. All rights reserved.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Isolation and biochemical characterization of bradykinin-potentiating peptides from Bitis gabonica rhinoceros

    No full text
    <div><p>Abstract Background: Venoms represent a still underexplored reservoir of bioactive components that might mitigate or cure diseases in conditions in which conventional therapy is ineffective. The bradykinin-potentiating peptides (BPPs) comprise a class of angiotensin-I converting enzyme (ACE) inhibitors. The BPPs usually consist of oligopeptides with 5 to 13 residues with a high number of proline residues and the tripeptide Ile-Pro-Pro (IPP-tripeptide) in the C-terminus region and have a conserved N-terminal pyroglutamate residue. As a whole, the action of the BPPs on prey and snakebite victims results in the decrease of the blood pressure. The aim of this work was to isolate and characterize novel BPPs from the venom of Bitis gabonica rhinoceros. Methods: The crude venom of B. g. rhinoceros was fractionated by size exclusion chromatography and the peptide fraction (<7 kDa) was separated by reverse phase chromatography (RP-HPLC) and analyzed by ESI-IT-TOF-MS/MS. One new BPP was identified, synthetized and assayed for ACE inhibition and, in vivo, for edema potentiation. Results: Typical BPP signatures were identified in three RP-HPLC fractions. CID fragmentation presented the usual y-ion of the terminal P-P fragment as a predominant signal at m/z 213.1. De novo peptide sequencing identified one Bothrops-like BPP and one new BPP sequence. The new BPP was synthesized and showed poor inhibition over ACE, but displayed significant bradykinin-induced edema potentiation. Conclusions: So far, few BPPs are described in Viperinae, and based on the sequenced peptides, two non-canonical sequences were detected. The possible clinical role of this new peptides remains unclear.</p></div

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease

    Replacement of the Gamma by the Delta variant in Brazil: Impact of lineage displacement on the ongoing pandemic

    Get PDF
    The coronavirus disease 2019 (COVID-19) epidemic in Brazil was driven mainly by the spread of Gamma (P.1), a locally emerged variant of concern (VOC) that was first detected in early January 2021. This variant was estimated to be responsible for more than 96_per cent of cases reported between January and June 2021, being associated with increased transmissibility and disease severity, a reduction in neutralization antibodies and effectiveness of treatments or vaccines, and diagnostic detection failure. Here we show that, following several importations predominantly from the USA, the Delta variant rapidly replaced Gamma after July 2021. However, in contrast to what was seen in other countries, the rapid spread of Delta did not lead to a large increase in the number of cases and deaths reported in Brazil. We suggest that this was likely due to the relatively successful early vaccination campaign coupled with natural immunity acquired following prior infection with Gamma. Our data reinforce reports of the increased transmissibility of the Delta variant and, considering the increasing concern due to the recently identified Omicron variant, argues for the necessity to strengthen genomic monitoring on a national level to quickly detect the emergence and spread of other VOCs that might threaten global health
    corecore