9 research outputs found

    Efficacy of non-artemisinin- and artemisinin-based combination therapies for uncomplicated falciparum malaria in Cameroon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of drug combinations, including non-artemisinin-based and artemisinin-based combination therapy (ACT), is a novel strategy that enhances therapeutic efficacy and delays the emergence of multidrug-resistant <it>Plasmodium falciparum</it>. Its use is strongly recommended in most sub-Saharan African countries, namely Cameroon, where resistance to chloroquine is widespread and antifolate resistance is emerging.</p> <p>Methods</p> <p>Studies were conducted in Cameroonian children with acute uncomplicated <it>P. falciparum </it>malaria according to the standard World Health Organization protocol at four sentinel sites between 2003 and 2007. A total of 1,401 children were enrolled, of whom 1,337 were assigned to randomized studies and 64 were included in a single non-randomized study. The proportions of adequate clinical and parasitological response (PCR-uncorrected on day 14 and PCR-corrected on day 28) were the primary endpoints to evaluate treatment efficacy on day 14 and day 28. The relative effectiveness of drug combinations was compared by a multi-treatment Bayesian random-effect meta-analysis.</p> <p>Findings</p> <p>The results based on the meta-analysis suggested that artesunate-amodiaquine (AS-AQ) is as effective as other drugs (artesunate-sulphadoxine-pyrimethamine [AS-SP], artesunate-chlorproguanil-dapsone [AS-CD], artesunate-mefloquine [AS-MQ], dihydroartemisinin-piperaquine [DH-PP], artemether-lumefantrine [AM-LM], amodiaquine, and amodiaquine-sulphadoxine-pyrimethamine [AQ-SP]). AM-LM appeared to be the most effective with no treatment failure due to recrudescence, closely followed by DH-PP.</p> <p>Conclusion</p> <p>Although AM-LM requires six doses, rather than three doses for other artemisinin-based combinations, it has potential advantages over other forms of ACT. Further studies are needed to evaluate the clinical efficacy and tolerance of these combinations in different epidemiological context.</p

    Therapeutic efficacy of sulfadoxine-pyrimethamine, amodiaquine and the sulfadoxine-pyrimethamine-amodiaquine combination against uncomplicated Plasmodium falciparum malaria in young children in Cameroon

    No full text
    OBJECTIVE: To evaluate the therapeutic efficacy of sulfadoxine-pyrimethamine, amodiaquine, and the sulfadoxine-pyrimethamine-amodiaquine combination for the treatment of uncomplicated Plasmodium falciparum malaria in young children in Cameroon. METHODS: In a randomized study we evaluated the effectiveness and tolerance of (i) sulfadoxine-pyrimethamine (SP) (25 mg/kg body weight of sulfadoxine and 1.25 mg/kg of pyrimethamine in a single oral dose), (ii) amodiaquine (AQ) (30 mg/kg body weight in three divided daily doses), and (iii) the sulfadoxine-pyrimethamine-amodiaquine combination (SP+AQ) (same doses as in the other two treatment groups, given simultaneously on day 0) in young children in southern Cameroon. The parasitological and clinical responses were studied until day 28 in accordance with the modified 1996 WHO protocol for the evaluation of the therapeutic efficacy of antimalarial drugs. FINDINGS: Of 191 enrolled patients, 6 and 8 were excluded or lost to follow-up before day 14 and between day 14 and day 28, respectively. For the AQ-treated patients, parasitological and clinical evaluation on day 14 showed late treatment failure in 2 of 61 (3.3%) and adequate clinical response with parasitological failure in one (1.6%). There was an adequate clinical response in all patients treated with SP or SP+AQ. Therapeutic failure rates on day 28 were 13.6%, 10.2% and 0% in the SP, AQ, and SP+AQ groups, respectively. Anaemia improved in all three regimens. AQ produced faster fever clearance but was associated with more transient minor side-effects than SP. SP+AQ reduced the risk of recrudescence between day 14 and day 28 but increased the incidence of minor side-effects. CONCLUSION: SP+AQ can be recommended as a temporary means of slowing the spread of multidrug resistance in Plasmodium falciparum in Africa while the introduction of other combinations, including artemisinin derivatives, is awaited

    Therapeutic efficacy of sulfadoxine-pyrimethamine, amodiaquine and the sulfadoxine-pyrimethamine-amodiaquine combination against uncomplicated Plasmodium falciparum malaria in young children in Cameroon.

    No full text
    OBJECTIVE: To evaluate the therapeutic efficacy of sulfadoxine-pyrimethamine, amodiaquine, and the sulfadoxine-pyrimethamine-amodiaquine combination for the treatment of uncomplicated Plasmodium falciparum malaria in young children in Cameroon. METHODS: In a randomized study we evaluated the effectiveness and tolerance of (i) sulfadoxine-pyrimethamine (SP) (25 mg/kg body weight of sulfadoxine and 1.25 mg/kg of pyrimethamine in a single oral dose), (ii) amodiaquine (AQ) (30 mg/kg body weight in three divided daily doses), and (iii) the sulfadoxine-pyrimethamine-amodiaquine combination (SP+AQ) (same doses as in the other two treatment groups, given simultaneously on day 0) in young children in southern Cameroon. The parasitological and clinical responses were studied until day 28 in accordance with the modified 1996 WHO protocol for the evaluation of the therapeutic efficacy of antimalarial drugs. FINDINGS: Of 191 enrolled patients, 6 and 8 were excluded or lost to follow-up before day 14 and between day 14 and day 28, respectively. For the AQ-treated patients, parasitological and clinical evaluation on day 14 showed late treatment failure in 2 of 61 (3.3%) and adequate clinical response with parasitological failure in one (1.6%). There was an adequate clinical response in all patients treated with SP or SP+AQ. Therapeutic failure rates on day 28 were 13.6%, 10.2% and 0% in the SP, AQ, and SP+AQ groups, respectively. Anaemia improved in all three regimens. AQ produced faster fever clearance but was associated with more transient minor side-effects than SP. SP+AQ reduced the risk of recrudescence between day 14 and day 28 but increased the incidence of minor side-effects. CONCLUSION: SP+AQ can be recommended as a temporary means of slowing the spread of multidrug resistance in Plasmodium falciparum in Africa while the introduction of other combinations, including artemisinin derivatives, is awaited

    Reemergence of chloroquine-sensitive pfcrt K76 Plasmodium falciparum genotype in southeastern Cameroon

    No full text
    Abstract Background Chloroquine had been used extensively during the last five decades in Cameroon. Its decreasing clinical effectiveness, supported by high proportions of clinical isolates carrying the mutant pfcrt haplotype (CVIET), led the health authorities to resort to amodiaquine monotherapy in 2002 and artemisinin-based combination therapy (ACT) in 2004 (artesunate–amodiaquine, with artemether–lumefantrine as an alternative since 2006) as the first-line treatment of uncomplicated malaria. The aim of the present study was to investigate whether the withdrawal of chloroquine was associated with a reduction in pfcrt mutant parasite population and reemergence of chloroquine-sensitive parasites in southeastern Cameroon between 2003 and 2012. Methods The frequency of pfcrt haplotypes at positions 72–76 in Plasmodium falciparum isolates collected from individuals in 2003 and 2012 in southeastern Cameroon was determined by sequence specific oligonucleotide probes-enzyme linked immunosorbent assay (SSOP-ELISA). Results The proportions of parasites carrying the mutant haplotype CVIET and the wild-type CVMNK were 53.0 and 28.0% in 2003, respectively. The proportion of the mutant haplotype in samples collected 9 years later decreased to 25.3% whereas the proportion of parasites carrying the wild-type CVMNK haplotype was 53.7%. Conclusions Even though the proportion of chloroquine-sensitive parasites seems to be increasing in southeastern Cameroon, a reintroduction of chloroquine cannot be recommended at present in Cameroon. The current national anti-malarial drug policy should be implemented and reinforced to combat drug-resistant malaria

    Plasma levels of eight different mediators and their potential as biomarkers of various clinical malaria conditions in African children

    Get PDF
    Background: Plasmodium falciparum infection can lead to several clinical manifestations ranging from asymptomatic infections (AM) and uncomplicated malaria (UM) to potentially fatal severe malaria (SM), including cerebral malaria (CM). Factors implicated in the progression towards severe disease are not fully understood. Methods: In the present study, an enzyme-linked immunosorbent assay (ELISA) method was used to investigate the plasma content of several biomarkers of the immune response, namely Neopterin, sCD163, suPAR, Pentraxin 3 (PTX3), sCD14, Fractalkine (CX3CL1), sTREM-1 and MIG (CXCL9), in patients with distinct clinical manifestations of malaria. The goal of this study was to determine the relative involvement of these inflammatory mediators in the pathogenesis of malaria and test their relevance as biomarkers of disease severity. Results: ROC curve analysis show that children with AM were characterized by high levels of Fractalkine and sCD163 whereas children with UM were distinguishable by the presence of PTX3 in their plasma. Furthermore, principal component analysis indicated that the combination of Fractalkine, MIG, and Neopterin was the best predictor of AM condition, while suPAR, PTX3 and sTREM-1 combination was the best indicator of UM when compared to AM. The association of Neopterin, suPAR and Fractalkine was strongly predictive of SM or CM compared to UM. Conclusions: The results indicate that the simultaneous evaluation of these bioactive molecules as quantifiable blood parameters may be helpful to get a better insight into the clinical syndromes in children with malaria
    corecore